Concentric resistance training increases muscle strength without affecting microcirculation.

Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.
European journal of radiology (Impact Factor: 2.16). 01/2009; 73(3):614-21. DOI: 10.1016/j.ejrad.2008.12.002
Source: PubMed

ABSTRACT While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo.
Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54+/-9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics.
The significant (P<0.001) increase in CSA (60+/-16 before vs. 64+/-15 cm(2) after training) and in absolute muscle strength (isometric, 146+/-44 vs. 174+/-50 Nm; isokinetic, 151+/-53 vs. 174+/-62 Nm) demonstrated successful training. Neither capillary density ex vivo (351+/-75 vs. 326+/-62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2+/-1.2 vs. 1.1+/-1.1 ml/min/100g; blood flow velocity, 0.49+/-0.44 vs. 0.52+/-0.74 mms(-1)). Also, the intensities of high-energy phosphates phosphocreatine and beta-adenosintriphosphate were not different after training within the skeletal muscle at rest (beta-ATP/phosphocreatine, 0.29+/-0.06 vs. 0.28+/-0.04).
The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at rest.

Download full-text


Available from: Leif Schröder, Jun 21, 2015
1 Follower
  • Source
    Biology of Sport 07/2012; 29(3):217-222. DOI:10.5604/20831862.1003446 · 0.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Funktionelle Bildgebungstechniken tragen zur wachsenden Rolle der Bildgebung bei Muskelerkrankungen bei, da Änderungen in der Morphologie des Skelettmuskels alleine als nicht spezifisch für eine bestimmte Erkrankung gelten. Ein gutes Beispiel dieser funktionellen Bildgebungstechniken ist der kontrastverstärkte Ultraschall (CEUS) zur Visualisierung und Quantifizierung (patho-)physiologischer Informationen zur Mikrozirkulation des Skelettmuskels in vivo. Die Perfusion, d.h. der kapilläre Blutfluss pro Gewebeeinheit ist ein wichtiger funktioneller Parameter. Eine pathologisch veränderte Skelettmuskelperfusion findet man bei verschiedenen Erkrankungen wie degenerativen und entzündlichen Myopathien sowie der peripheren arteriellen Verschlusskrankheit (pAVK). Dieser Artikel gibt eine Übersicht der technischen Grundlagen und fokussiert sich dann auf klinisch viel versprechende Anwendungen der mikrovaskulären Bildgebung mittels CEUS, die bereits die Diagnostik dieser muskulären Erkrankungen verbessert haben. Zur Diagnostik einer Myositis ist der CEUS besser geeignet als der konventionelle B-Mode-Ultraschall, weil der CEUS die entzündlich induzierte muskuläre Hyperperfusion in einer akuten Myositis quantifizieren kann. Dies konnte schon mit hochenergetischen („High-mechanical index“-)Techniken unter Verwendung eines Ultraschallkontrastmittels der ersten Generation demonstriert werden. Niederenergetische CEUS-Techniken („low-mechanical index“) erfordern die Verwendung eines Ultraschallkontrastmittels der zweiten Generation und erlauben darüber hinaus die Echtzeitquantifizierung der muskulären Mikrozirkulation in Ruhe und während Belastung. Mit dieser CEUS-Methode lässt sich der Einfluss verschiedener Belastungsintensitäten auf die Mikrozirkulation des belasteten Muskels analysieren. Zudem kann die arterielle Perfusionsreserve bei einer pAVK adäquat mit Low-mechanical-index-CEUS-Techniken untersucht werden. Ersten Ergebnissen zufolge ist die arterielle Perfusionsreserve bei Patienten mit pAVK im Vergleich zu gesunden Probanden reduziert. Schlussfolgernd lässt sich konstatieren, dass moderne CEUS-Techniken über unspezifische morphologische Veränderungen hinaus, wie z.B. ödematöse oder lipomatöse Veränderungen bzw. Hyper- oder Atrophie, einen Einblick in die muskuläre Pathophysiologie erlauben. Functional imaging can increase the role of imaging in muscular diseases, as alterations of muscle morphology alone are non-specific for a particular disease. A good example for these functional imaging techniques is to use contrast-enhanced ultrasound (CEUS) to visualize and quantify in vivo (patho-) physiological information about the skeletal muscle microcirculation. Perfusion, i.e. the blood flow per tissue unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathy or peripheral arterial disease (PAD). This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on applications of microvascular imaging by CEUS which has improved the diagnosis of these muscular disorders. For evaluation of myositis, CEUS is more efficient in the diagnostic work-up than routine b-mode ultrasound because CEUS can detect inflammation-induced muscular hyperperfusion in acute myositis. This has already been demonstrated by high-mechanical index techniques using a first generation ultrasound contrast agent. Low-mechanical index CEUS techniques that require the use of a second generation contrast agent allow real-time quantification of muscular microcirculation at rest and during exercise. Using this CEUS method, the influence of different exercise intensities on the microcirculation of the exercising muscle becomes detectable. Moreover, the arterial perfusion reserve in PAD can be adequately examined using low-mechanical index CEUS. Initial findings have shown that the arterial perfusion reserve in patients suffering from PAD is reduced in comparison to healthy volunteers. In conclusion, modern CEUS techniques can offer deeper insights in muscular (patho-) physiology than just illustrating unspecific myopathic manifestations using conventional diagnostic imaging, such as edematous or lipomatous changes, hypertrophy or atrophy. SchlüsselwörterKontrastverstärkter Ultraschall–Mikrozirkulation–Skelettmuskel–Muskelkrankheiten–Periphere arterielle Verschlusskrankheit KeywordsContrast-enhanced ultrasound–Microcirculation–Skeletal muscle–Muscle diseases–Peripheral arterial disease
    Der Radiologe 06/2011; 51(6):497-505. DOI:10.1007/s00117-010-2106-6 · 0.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare the effects of aerobic training and resistance training on glycaemic control factors in men with type 2 diabetes. We performed a randomized clinical trial in which 26 men (age 57±8 years) with type 2 diabetes were randomly assigned to an aerobic training group or a resistance training group. The participants exercised three times a week for 12 weeks. Metabolic factors (haemoglobin A1C; fasting glucose and C-peptide; total, LDL, and HDL cholesterol; triglycerides), blood pressure, body composition, maximum oxygen uptake, and muscular strength were measured before and after the intervention. Both training groups experienced significant improvements in haemoglobin A1C: the aerobic training group saw a decrease in absolute values from 7.10±0.97% to 6.55±0.74% (P=0.001) and the resistance training group from 7.21±1.8% to 6.85±0.66% (P=0.024). Both training groups had significant improvements in systolic and diastolic blood pressure (P
    European Journal of Sport Science 09/2011; 11(5):365-374. DOI:10.1080/17461391.2010.523851 · 1.31 Impact Factor