Article

A complex interplay between Akt, TSC2 and the two mTOR complexes

Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
Biochemical Society Transactions (Impact Factor: 3.24). 03/2009; 37(Pt 1):217-22. DOI: 10.1042/BST0370217
Source: PubMed

ABSTRACT Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian target of rapamycin) complex] 1, thereby activating mTORC1 in response to growth factors. Through negative-feedback mechanisms, mTORC1 activity inhibits growth factor stimulation of PI3K. This is particularly evident in cells and tumours lacking the TSC1-TSC2 complex, where Akt signalling is severely attenuated due, at least in part, to constitutive activation of mTORC1. An additional level of complexity in the relationship between Akt and the TSC1-TSC2 complex has recently been uncovered. The growth-factor-stimulated kinase activity of mTORC2 [also known as the mTOR-rictor (rapamycin-insensitive companion of mTOR) complex], which normally enhances Akt signalling by phosphorylating its hydrophobic motif (Ser(473)), was found to be defective in cells lacking the TSC1-TSC2 complex. This effect on mTORC2 can be separated from the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1. The present review discusses our current understanding of the increasingly complex functional interactions between Akt, the TSC1-TSC2 complex and mTOR, which are fundamentally important players in a large variety of human diseases.

Download full-text

Full-text

Available from: Jingxiang Huang, Mar 12, 2014
1 Follower
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G+C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter. Copyright © 2014. Published by Elsevier Ltd.
    Pharmacological Research 12/2014; 91. DOI:10.1016/j.phrs.2014.11.005 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Head and neck squamous cell carcinoma (HNSCC) is one of the most morbid, mortal, and genetically diverse malignancies. Although HNSCC is heterogeneous in nature, alterations in major components of the PI3K/Akt/mTOR pathway are consistently observed throughout the majority of HNSCC cases. These alterations include genetic aberrations such as mutations or DNA copy number variations, and dysregulation of mRNA or protein expression. In normal physiology, the PI3K/Akt/mTOR axis regulates cell survival, growth, and metabolism. However, alterations in this pathway lead to the malignant phenotype which characterizes HNSCC, among many other cancers. For this reason, both pharmaceutical companies and academic institutions are actively developing and investigating inhibitors of PI3K, Akt, and mTOR in preclinical and clinical studies of HNSCC. Many of these inhibitors have shown promise, while the effects of others are tempered by the mechanisms through which HNSCC can evade therapy. As such, current research aimed at elucidating the interactions among PI3K/Akt/mTOR and other important signaling pathways which may drive resistance in HNSCC, such as p53, NF-κB, and MAPK, has become a prominent focus toward better understanding how to most effectively treat HNSCC. This article is protected by copyright. All rights reserved.
    Oral Diseases 11/2013; DOI:10.1111/odi.12206 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
    Experimental gerontology 11/2013; 50. DOI:10.1016/j.exger.2013.10.014 · 3.53 Impact Factor