Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin.

Department of Surgery, Division of Urology, University of Massachusetts Medical School, Worcester, Massachusett 01655, USA.
Cancer Research (Impact Factor: 9.28). 02/2009; 69(3):1117-24. DOI: 10.1158/0008-5472.CAN-07-6270
Source: PubMed

ABSTRACT beta-Catenin is essential for E-cadherin-mediated cell adhesion in epithelial cells and also acts as a key cofactor for transcription activity. We previously showed that protein kinase D1 (PKD1), founding member of the PKD family of signal transduction proteins, is down-regulated in advanced prostate cancer and interacts with E-cadherin. This study provides evidence that PKD1 interacts with and phosphorylates beta-catenin at Thr(112) and Thr(120) residues in vitro and in vivo; mutation of Thr(112) and Thr(120) results in increased nuclear localization of beta-catenin and is associated with altered beta-catenin-mediated transcription activity. It is known that mutation of Thr(120) residue abolishes binding of beta-catenin to alpha-catenin, which links to cytoskeleton, suggesting that PKD1 phosphorylation of Thr(120) could be critical for cell-cell adhesion. Overexpression of PKD1 represses beta-catenin-mediated transcriptional activity and cell proliferation. Epistatic studies suggest that PKD1 and E-cadherin are within the same signaling pathway. Understanding the molecular basis of PKD1-beta-catenin interaction provides a novel strategy to target beta-catenin function in cells including prostate cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.
    PLoS ONE 04/2014; 9(4):e95191. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over 80% of colon cancer development and progression is a result of the dysregulation of β-catenin signaling pathway. Herein, for the first time, we demonstrate that a serine-threonine kinase, Protein Kinase D1 (PKD1), modulates the functions of β-catenin to suppress colon cancer growth. Analysis of normal and colon cancer tissues reveals downregulation of PKD1 expression in advanced stages of colon cancer and its co-localization with β-catenin in the colon crypts. This PKD1 downregulation corresponds with the aberrant expression and nuclear localization of β-catenin. In-vitro investigation of the PKD1-β-catenin interaction in colon cancer cells reveal that PKD1 overexpression suppresses cell proliferation and clonogenic potential and enhances cell-cell aggregation. We demonstrate that PKD1 directly interacts with β-catenin and attenuates β-catenin transcriptional activity by decreasing nuclear β-catenin levels. Additionally, we show that inhibition of nuclear β-catenin transcriptional activity is predominantly influenced by nucleus targeted PKD1. This subcellular modulation of β-catenin results in enhanced membrane localization of β-catenin and thereby increases cell-cell adhesion. Studies in a xenograft mouse model indicate that PKD1 overexpression delayed tumor appearance, enhanced necrosis and lowered tumor hypoxia. Overall, our results demonstrate a putative tumor-suppressor function of PKD1 in colon tumorigenesis via modulation of β-catenin functions in cells.possible CD8+-dependency and beneficial effect of nuclear IL-23p19 on overall patient survival.
    Oncotarget 08/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-cell adhesion complexes are increasingly recognized as an important cell-signaling site, similar to integrin-extracellular matrix focal adhesions. Further, cell-cell adhesions are involved in the regulation of multi-cellular/tissue organization and organ, tissue and cellular level functional behavior. Although N-cadherin is the major cell-cell adhesion molecule in vascular smooth muscle (VSM), only limited studies have been undertaken to understand its function in VSM. In contrast, N-cadherin signaling and functions have been extensively studied in neurons, fibroblasts, and myocytes, as well as in the context of epithelial-mesenchymal-transitions. Increasing evidence has indicated that N-cadherin mediated cell-cell adhesions are important for tissue integrity and cell proliferation. Relevant to VSM, N-cadherin's role in actin cytoskeleton organization and contraction, as well as its role in regulation of Rho-family GTPases are of particular interest. This paper briefly reviews the fundamentals of N-cadherin biology that help shape our current understanding of its function and signaling mechanisms. In particular, attention is given to applications of this knowledge to VSM. The review points to the need for more research effort that is directed at understanding the role of N-cadherins in the regulation of vascular function. This article is protected by copyright. All rights reserved.
    Microcirculation (New York, N.Y.: 1994) 02/2014; · 2.37 Impact Factor