Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score—the CoLaus Study

Discovery Analytics, GlaxoSmithKline, Collegeville, PA, USA.
Diabetologia (Impact Factor: 6.67). 02/2009; 52(4):600-8. DOI: 10.1007/s00125-008-1254-y
Source: PubMed


Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors.
We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals.
The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles.
In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.

Download full-text


Available from: Dawn M Waterworth,
36 Reads
  • Source
    • "To motivate the methodological issues considered in this paper, we here provide some examples of how allele scores have been used in practice. Lin et al. [17] used an unweighted and a weighted allele score based on 15 genetic variants in the context of risk prediction, deriving weights from the data under analysis. They found that a weighted allele score provided greater discrimination than an unweighted score when used in conjunction with conventional risk factors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate 'weak instrument' bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score.
    International Journal of Epidemiology 08/2013; 42(4):1134-44. DOI:10.1093/ije/dyt093 · 9.18 Impact Factor
  • Source
    • "[28] as: "
    [Show abstract] [Hide abstract]
    ABSTRACT: Susceptibility variants identified by genome-wide association studies (GWAS) have modest effect sizes. Whether such variants provide incremental information in assessing risk for common 'complex' diseases is unclear. We investigated whether measured and imputed genotypes from a GWAS dataset linked to the electronic medical record alter estimates of coronary heart disease (CHD) risk. Study participants (n = 1243) had no known cardiovascular disease and were considered to be at high, intermediate, or low 10-year risk of CHD based on the Framingham risk score (FRS) which includes age, sex, total and HDL cholesterol, blood pressure, diabetes, and smoking status. Of twelve SNPs identified in prior GWAS to be associated with CHD, four were genotyped in the participants as part of a GWAS. Genotypes for seven SNPs were imputed from HapMap CEU population using the program MACH. We calculated a multiplex genetic risk score for each patient based on the odds ratios of the susceptibility SNPs and incorporated this into the FRS. The mean (SD) number of risk alleles was 12.31 (1.95), range 6-18. The mean (SD) of the weighted genetic risk score was 12.64 (2.05), range 5.75-18.20. The CHD genetic risk score was not correlated with the FRS (P = 0.78). After incorporating the genetic risk score into the FRS, a total of 380 individuals (30.6%) were reclassified into higher-(188) or lower-risk groups (192). A genetic risk score based on measured/imputed genotypes at 11 susceptibility SNPs, led to significant reclassification in the 10-y CHD risk categories. Additional prospective studies are needed to assess accuracy and clinical utility of such reclassification.
    BMC Cardiovascular Disorders 11/2011; 11(1):66. DOI:10.1186/1471-2261-11-66 · 1.88 Impact Factor
  • Source
    • "where sex = (male, female); RSall and RSsex are the risk scores built as the sum of deleterious alleles from genes with a high RI in males only (RSmale), in females only (RSfemale) or in both sexes (RSall); and Wall, Wmale, and Wfemale are the integer values of the corresponding genetic relative risks (GRR) associated with the corresponding risk scores (RSall, RSmale and RSfemale, respectively). These weights were calculated following Lin et al. [50] who showed that a weighted genetic score provided more predictive value than an unweighted genetic score. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: The inheritance pattern in most cases of autism is complex. The risk of autism is increased in siblings of children with autism and previous studies have indicated that the level of risk can be further identified by the accumulation of multiple susceptibility single nucleotide polymorphisms (SNPs) allowing for the identification of a higher-risk subgroup among siblings. As a result of the sex difference in the prevalence of autism, we explored the potential for identifying sex-specific autism susceptibility SNPs in siblings of children with autism and the ability to develop a sex-specific risk assessment genetic scoring system. SNPs were chosen from genes known to be associated with autism. These markers were evaluated using an exploratory sample of 480 families from the Autism Genetic Resource Exchange (AGRE) repository. A reproducibility index (RI) was proposed and calculated in all children with autism and in males and females separately. Differing genetic scoring models were then constructed to develop a sex-specific genetic score model designed to identify individuals with a higher risk of autism. The ability of the genetic scores to identify high-risk children was then evaluated and replicated in an independent sample of 351 affected and 90 unaffected siblings from families with at least 1 child with autism. We identified three risk SNPs that had a high RI in males, two SNPs with a high RI in females, and three SNPs with a high RI in both sexes. Using these results, genetic scoring models for males and females were developed which demonstrated a significant association with autism (P = 2.2 × 10-6 and 1.9 × 10-5, respectively). Our results demonstrate that individual susceptibility associated SNPs for autism may have important differential sex effects. We also show that a sex-specific risk score based on the presence of multiple susceptibility associated SNPs allow for the identification of subgroups of siblings of children with autism who have a significantly higher risk of autism.
    Molecular Autism 10/2011; 2(1):17. DOI:10.1186/2040-2392-2-17 · 5.41 Impact Factor
Show more