Electrocoagulation of palm oil mill effluent.

Dept. of Chemistry, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand.
International Journal of Environmental Research and Public Health (Impact Factor: 2). 10/2008; 5(3):177-80. DOI: 10.3390/ijerph2008050025
Source: DOAJ

ABSTRACT Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This research paper covers the suitability of the coagulation–flocculation process using Moringa oleifera seeds after oil extraction as a natural and environmentally friendly coagulant for palm oil mill effluent treatment. The performance of M. oleifera coagulant was studied along with the flocculant KP 9650 in removal of suspended solids, organic components and in increasing the floc size. The optimum values of the operating parameters obtained from the laboratory jar test were applied in a pilot-scale treatment plant comprised of coagulation–flocculation and filtration processes. Pilot-scale pretreatment resulted in 99.7% suspended solids removal, 71.5% COD reduction, 68.2% BOD reduction, 100% oil and grease removal and 91% TKN removal. In pilot plant pretreatment, the percentage recovery of water was 83.3%, and 99.7% sludge was recovered after dewatering in a filter press. Copyright © 2006 Society of Chemical Industry
    Journal of Chemical Technology & Biotechnology 11/2006; 81(12):1852 - 1858. · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.
    Water Research 11/2006; 40(17):3193-208. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the treatment of paper mill effluents using electrocoagulation. Removal of lignin, phenol, chemical oxygen demand (COD) and biological oxygen demand (BOD) from paper mill effluents was investigated at various current intensities by using different electrodes (Al and Fe) and at various electrolysis times (1.0, 2.5, 5.0 and 7.5min). It was observed that the experiments carried out at 12V, an electrolysis time of 2min and a current intensity of 77.13mA were sufficient for the removal of these pollutants with each electrode. The removal capacities of the process using an Al electrode were 80% of lignin, 98% of phenol, 70% of BOD, and 75% of COD after 7.5min. Using an Fe electrode the removal capacities were 92%, 93%, 80% and 55%, respectively. In addition, it was found that removal of lignin, phenol, BOD and COD increased with increasing current intensity. In the experiments carried out at different current intensities, higher removal can be explained through a decrease in intra-resistance of solution and consequently an increase at the transfer speed of organic species to electrodes. It was also found that Al electrode performs higher efficiency than Fe electrode except for COD removal. However, the time required for removal of BOD was more than that of COD. The results suggest that electrocoagulation could be considered as an effective alternative to paper mill effluents treatment.
    Journal of Environmental Management 06/2008; 87(3):420-8. · 3.06 Impact Factor

Full-text (3 Sources)

Available from
Dec 16, 2014