Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis.

Dental Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, NY, USA.
BMC Cancer (Impact Factor: 3.33). 01/2009; 9:11. DOI: 10.1186/1471-2407-9-11
Source: PubMed

ABSTRACT The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling.
The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR.
Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only GLUT3 showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). PACE4 mRNA expression failed to show correlation with any of the relevant parameters.
The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.

  • [Show abstract] [Hide abstract]
    ABSTRACT: All trans retinoic acid (ATRA) is used as standard of care in promyelocytic leukemia. Not much is known about the gene expression profile in ATRA-treated tongue cancer cells. We performed a genome-wide transcriptional profiling of ATRA-treated tongue cancer cells to understand the pathways that mediate ATRA action in tongue cancer. We measured the effects of ATRA on the proliferation of SCC-9 human tongue carcinoma cells. The differential gene expression profile was measured by microarray analysis of untreated and ATRA-treated cells and expression of key genes was validated by real-time RT-PCR. ATRA treatment (24 and 48 hr) significantly inhibited SCC-9 cell proliferation in a dose-dependent manner. SCC-9 cells treated for 48 hr with ATRA showed upregulation of 276 genes, including ANGPTL4, GDF15, ICAM1 and TUSC4, and downregulation of 43 genes, including CXCL10. Validation by real-time PCR showed a significant upregulation of intracellular adhesion molecule 1 (ICAM1) and downregulation of CXCL10 and IL32. ATRA had an anti-tumor effect in tongue cancer cells. This effect is likely mediated via upregulation of ICAM1 and downregulation of CXCL10 and IL32.
    Journal of Surgical Oncology 07/2011; 104(7):830-5. · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, the incidence of oral tongue cancer is on the rise, adding to the existing burden due to prevailing low survival and high recurrence rates. This study uses high-throughput expression profiling to identify candidate markers of resistance/response in patients with oral tongue cancer. Analysis of primary and post-treatment samples (12 tumor and 8 normal) by the Affymetrix platform (HG U133 plus 2) identified 119 genes as differentially regulated in recurrent tumors. The study groups had distinct profiles, with induction of immune response and apoptotic pathways in the non-recurrent and metastatic/invasiveness pathways in the recurrent group. Validation was carried out in tissues by Quantitative Real-Time PCR (QPCR) (n=30) and immunohistochemistry (IHC) (n=35) and in saliva by QPCR (n=37). The markers, COL5A1, HBB, IGLA and TSC individually and COL5A1 and HBB in combination had the best predictive power for treatment response in the patients. A subset of markers identified (COL5A1, ABCG1, MMP1, IL8, FN1) could be detected in the saliva of patients with oral cancers with their combined sensitivity and specificity being 0.65 and 0.87 respectively. The study thus emphasizes the extreme prognostic value of exploring markers of treatment resistance that are expressed in both tissue and saliva.
    Disease markers 01/2012; 32(1):51-64. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The differential transcriptome analysis provides better understanding of molecular pathways leading to cancer, which in turn allows designing the effective strategies for diagnosis, therapeutic intervention and prediction of therapeutic outcome. This study describes the transcriptome analysis of buccal cancer and normal tissue by CLC Genomics Workbench from the data generated by Roche's 454 sequencing platform, which identified total of 1797 and 2655 genes uniquely expressed in normal and cancer tissues, respectively with 2466 genes expressed in both tissues. Among the genes expressed in both tissues, 1842 were up-regulated whereas 624 were down-regulated in cancer tissue. Besides transcripts known to be involved in cancer, this study led to the identification of novel transcripts, with significantly altered expression in buccal cancer tissue, providing potential targets for diagnosis and cancer therapeutics. The functional categorization by the KEGG pathway and gene ontology analysis revealed enrichment of differentially expressed transcripts to various pathways leading to cancer, including the p53 signaling pathway. Moreover, the gene ontology analysis unfolded suppression of transcripts involved in actin mediated cell contraction process. The down-regulation of four of these transcripts MYL1, ACTA1, TCAP and DESMIN in buccal cancer were further supported by quantitative PCR signifying its possible implication in the cancer progression.
    Gene 07/2012; 507(2):152-8. · 2.20 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014