Role of Chromodomain Helicase DNA binding protein 2 in DNA damage response signaling and tumorigenesis

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
Oncogene (Impact Factor: 8.56). 02/2009; 28(8):1053-62. DOI: 10.1038/onc.2008.440
Source: PubMed

ABSTRACT The chromodomain helicase DNA-binding proteins (CHDs) are known to affect transcription through their ability to remodel chromatin and modulate histone deacetylation. In an effort to understand the functional role of the CHD2 in mammals, we have generated a Chd2 mutant mouse model. Remarkably, the Chd2 protein appears to play a critical role in the development, hematopoiesis and tumor suppression. The Chd2 heterozygous mutant mice exhibit increased extramedullary hematopoiesis and susceptibility to lymphomas. At the cellular level, Chd2 mutants are defective in hematopoietic stem cell differentiation, accumulate higher levels of the chromatin-associated DNA damage response mediator, gamma H2AX, and exhibit an aberrant DNA damage response after X-ray irradiation. Our data suggest a direct role for the chromatin remodeling protein in DNA damage signaling and genome stability maintenance.

Download full-text


Available from: Robert Donnell, Dec 10, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide stretches within HIV-1 proteins display homology to over 50 components from all compartments of the human immune defence network. The homologous peptides are in most cases immunogenic, suggesting that antibodies to HIV-1 proteins could mount an autoimmune attack against multiple components of the immune system itself. HIV-1 proteins are also homologous to autoantigens in Alzheimer's disease, chronic obstructive pulmonary disorder, multiple sclerosis, Myasthenia Gravis, Pemphigus Vulgaris, Sjogrens syndrome and systemic Lupus Erythematosus, all of which have been associated with HIV-1 infection. This mimicry suggests that HIV-1/AIDS has a major autoimmune component and that HIV-1 antibodies could selectively target the immune system and autoantigens in other autoimmune disorders. This could radically change our conception of how HIV-1 acts, and perhaps lead to novel therapeutic strategies, which, counter intuitively might even involve the use of immunosuppressants in the early stages of the disease. Autoantigens from the human autoimmune diseases mentioned above also align with peptides from other viruses implicated as risk factors in each disease. Mutant peptides from Huntington's disease and other polyglutamine disorders, and from cystic fibrosis also align with common viruses. The London APP717 V→I mutant in Familial Alzheimer's disease converts the surrounding peptide to matches with Rhinoviruses causing the common cold and to the Norovirus responsible for vomiting sickness. Viral mimicry related autoimmunity may thus play a role in many autoimmune and even human genetic disorders. It is possible that this is a near universal phenomenon, reflecting the idea that viruses are responsible for the origin of higher forms of life, leaving behind a deadly legacy of viral-derived human proteins with homology to antigenic proteins in the current virome that may be responsible for most of our ills.
    Nature Precedings 06/2010; DOI:10.1038/npre.2010.4582.1
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An array of measured device data, a numerical device simulator, and a process/physics-based compact model are used to gain new and important physical insights on nanoscale FinFETs with undoped thin-fin bodies. The insights, which include unavoidable/needed gate underlap, bias-dependent effective channel length, and non-ohmic fin-extension voltage drops, reveal the significance of gate positioning on, and source/drain doping profile in, the thin fin, and imply novel compact modeling that will be needed for optimal design of nonclassical CMOS circuits.
    Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International; 01/2004