Systemic regulation of starvation response in Caenorhabditis elegans.

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
Genes & development (Impact Factor: 12.64). 02/2009; 23(1):12-7. DOI: 10.1101/gad.1723409
Source: PubMed

ABSTRACT When the supply of environmental nutrients is limited, multicellular animals can make both physiological and behavioral changes so as to cope with nutrient starvation. Although physiological and behavioral effects of starvation are well known, the mechanisms by which animals sense starvation systemically remain elusive. Furthermore, what constituent of food is sensed and how it modulates starvation response is still poorly understood. In this study, we use a starvation-hypersensitive mutant to identify molecules and mechanisms that modulate starvation signaling. We found that specific amino acids could suppress the starvation-induced death of gpb-2 mutants, and that MGL-1 and MGL-2, Caenorhabditis elegans homologs of metabotropic glutamate receptors, were involved. MGL-1 and MGL-2 acted in AIY and AIB neurons, respectively. Treatment with leucine suppressed starvation-induced stress resistance and life span extension in wild-type worms, and mutation of mgl-1 and mgl-2 abolished these effects of leucine. Taken together, our results suggest that metabotropic glutamate receptor homologs in AIY and AIB neuron may modulate a systemic starvation response, and that C. elegans senses specific amino acids as an anti-hunger signal.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.
    PLoS Biology 11/2013; 11(11):e1001712. DOI:10.1371/journal.pbio.1001712 · 11.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
    Genetics 07/2013; 194(3):539-55. DOI:10.1534/genetics.113.150847 · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal response to changes in environmental cues is a complex dynamical process that occurs at diverse molecular and cellular levels. To gain a quantitative understanding of such processes, it is desirable to observe many individuals, subjected to repeatable and well defined environmental cues over long time periods. Here we present WormSpa, a microfluidic system where worms are individually confined in optimized chambers. We show that worms in WormSpa are neither stressed nor starved, and in particular exhibit pumping and egg-laying behaviors equivalent to those of freely behaving worms. We demonstrate the applicability of WormSpa for studying stress response and physiological processes. WormSpa is simple to make and easy to operate, and its design is modular, making it straightforward to incorporate available microfluidic technologies. We expect that WormSpa would open novel avenues of research, hitherto impossible or impractical.
    Lab on a Chip 12/2013; 14(4). DOI:10.1039/c3lc51061a · 5.75 Impact Factor


Available from