Article

Update on the human broad tapeworm (genus diphyllobothrium), including clinical relevance.

Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Ceské Budejovice, Czech Republic.
Clinical microbiology reviews (Impact Factor: 16). 02/2009; 22(1):146-60, Table of Contents. DOI: 10.1128/CMR.00033-08
Source: PubMed

ABSTRACT Tapeworms (Cestoda) continue to be an important cause of morbidity in humans worldwide. Diphyllobothriosis, a human disease caused by tapeworms of the genus Diphyllobothrium, is the most important fish-borne zoonosis caused by a cestode parasite. Up to 20 million humans are estimated to be infected worldwide. Besides humans, definitive hosts of Diphyllobothrium include piscivorous birds and mammals, which represent a significant zoonotic reservoir. The second intermediate hosts include both freshwater and marine fish, especially anadromous species such as salmonids. The zoonosis occurs most commonly in countries where the consumption of raw or marinated fish is a frequent practice. Due to the increasing popularity of dishes utilizing uncooked fish, numerous cases of human infections have appeared recently, even in the most developed countries. As many as 14 valid species of Diphyllobothrium can cause human diphyllobothriosis, with D. latum and D. nihonkaiense being the most important pathogens. In this paper, all taxa from humans reported are reviewed, with brief information on their life history and their current distribution. Data on diagnostics, epidemiology, clinical relevance, and control of the disease are also summarized. The importance of reliable identification of human-infecting species with molecular tools (sequences of mitochondrial genes) as well as the necessity of epidemiological studies aimed at determining the sources of infections are pointed out.

Download full-text

Full-text

Available from: Roman Kuchta, Jun 28, 2015
0 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recently erected cestode order Diphyllobothriidea is unique among all tapeworm orders in that its species infect all major groups of tetrapods, including man. In the present paper, the vitellogenesis of representatives of all three currently recognized families of this order was evaluated, based on ultrastructural (transmission electron microscopy) and cytochemical (detection of glycogen) observations. Vitelline follicles of all taxa studied, i.e. Cephalochlamys namaquensis from clawed frogs (Xenopus), Duthiersia expansa from monitors (Varanus) and Schistocephalus solidus that matures in fish-eating birds, contain vitelline cells at various stages of development and interstitial cells. Developing vitellocytes are characterized by the presence of mitochondria, granular endoplasmic reticulum and Golgi complexes involved in the synthesis of shell globules and formation of shell globule clusters. Mature vitellocytes contain lipids and glycogen in different proportions. The most significant differences among the three diphyllobothriidean families were found in the presence or absence of lamellar bodies. Variations of vitelline clusters morphology and types of lipid droplets are described and discussed in relation to the presumed evolutionary history of diphyllobothriideans, which belong to the most basal cestode groups.
    Comptes Rendus Biologies 02/2015; 338:169-179. DOI:10.1016/j.crvi.2015.01.001 · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recently erected cestode order Diphyllobothriidea is unique among all tapeworm orders in that its species infect all major groups of tetrapods including man. In the present paper, vitellogenesis of representatives of all three currently recognized families of this order was evaluated, based on the ultrastructural (transmission electron microscopy) and cytochemical (detection of glycogen) observations. Vitelline follicles of all taxa studied, i.e. Cephalochlamys namaquensis from clawed frogs (Xenopus), Duthiersia expansa from monitors (Varanus) and Schistocephalus solidus that matures in fish-eating birds, contain vitelline cells at various stages of development and intestitial cells. Developing vitellocytes are characterized by the presence of mitochondria, granular endoplasmic reticulum and Golgi complexes involved in the synthesis of shell globules and formation of shell globule clusters. Mature vitellocytes contain lipids and glycogen in different proportions. The most significant differences among the three diphyllobothriidean families were found in the presence or absence of lamellar bodies. Variations of vitelline clusters morphology and types of lipid droplets are described and discussed in relation to the presumed evolutionary history of diphyllobothriideans, which belong among the most basal cestode groups.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zoonotic transmission of parasitism is an underreported and under recognized, worldwide distributed entity. Humans acquire these infections either through food, water, soil or close contact with animals. Mostly parasitic zoonoses are those of neglected diseases but with more demand of the food supply, increased travelling and increased ratio of highly susceptible persons coupled with changes in culinary practices with simultaneous improvement in diagnostic tools as well as communication facilities. These conditions are emerging at an alarming rate. Global sourcing of food, coupled with changing consumer vogues, including the consumption of raw vegetables and undercooking to retain the natural taste and preserve heat-labile nutrients, can increase the risk of foodborne transmission. The increasing demand for raw or under-cooked food is also considered as one of the major reasons causing food borne infections, especially waterborne parasitic diseases, in the last decade. The present review will discuss the factor responsible for transmission and occurrence of zoonotic diseases along with different helminthes and protozoan parasites that are considered to be as important food borne zoonoses. A greater awareness of parasite contamination of our environment and its impact on health has precipitated the development of better detection methods. Overall, there is an urgent need for better monitoring and control of food-borne parasites using new technologies. Robust, efficient detection, viability and typing methods are required to assess risks and to further epidemiological understanding. This paper reviews the most important emerging food-borne parasites, with emphasis on transmission routes.
    Advances in Animal and Veterinary Sciences 04/2014; 2(4S):24-32. DOI:10.14737/journal.aavs/2014/2.4s.24.32