Article

Effect of creatine supplementation during cast-induced immobilization on the preservation of muscle mass, strength, and endurance.

Department of Human Kinetics, St Francis Xavier University, Antigonish, Canada.
The Journal of Strength and Conditioning Research (Impact Factor: 1.8). 02/2009; 23(1):116-20.
Source: PubMed

ABSTRACT Muscle and strength loss will occur during periods of physical inactivity and immobilization. Creatine supplementation may have a favorable effect on muscle mass and strength independently of exercise. The purpose of this study was to determine the effects of creatine supplementation on upper limb muscle mass and muscle performance after immobilization. Before the study, creatine-naïve men (n = 7; 18-25 years) were assessed for lean tissue mass (dual-energy X-ray absorptiometry), strength (1-repetition maximum [1RM] isometric single arm elbow flexion/extension), and muscle endurance (maximum number of single-arm isokinetic elbow flexion/extension repetitions at 60% 1RM). After baseline measures, subjects had their dominant or nondominant (random assignment) upper limb immobilized (long arm plaster cast) at 90 degrees elbow flexion. Using a single-blind crossover design, subjects received placebo (maltodextrin; 4 x 5 gxd-1) during days 1-7 and creatine (4 x 5 gxd-1) during days 15-21. The cast was removed during days 8-14 and 22-29. The dependent measures of lean tissue mass, strength, and endurance were assessed at baseline, postcast, and after the study. During immobilization, compared with isocaloric placebo, creatine supplementation better maintained lean tissue mass (Cr +0.9% vs. PLA -3.7%, p < 0.05), elbow flexor strength (Cr -4.1% vs. PLA -21.5%, p < 0.05), and endurance (Cr -9.6% vs. PLA -43%, p < 0.05), and elbow extensor strength (Cr -3.8% vs. PLA -18%, p < 0.05) and endurance (Cr -6.5% vs. PLA -35%, p < 0.05). These results indicate that short-term creatine supplementation attenuates the loss in muscle mass and strength during upper-arm immobilization in young men.

1 Bookmark
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Situations such as recovery from injury or illness require otherwise healthy humans to undergo periods of disuse, which lead to considerable losses of skeletal muscle mass and, subsequently, numerous negative health consequences. It has been established that prolonged disuse (>10 days) leads to a decline in basal and postprandial rates of muscle protein synthesis, without an apparent change in muscle protein breakdown. It also seems, however, that an early and transient (1-5 days) increase in basal muscle protein breakdown may also contribute to disuse atrophy. A period of disuse reduces energy requirements and appetite. Consequently, food intake generally declines, resulting in an inadequate dietary protein consumption to allow proper muscle mass maintenance. Evidence suggests that maintaining protein intake during a period of disuse attenuates disuse atrophy. Furthermore, supplementation with dietary protein and/or essential amino acids can be applied to further aid in muscle mass preservation during disuse. Such strategies are of particular relevance to the older patient at risk of developing sarcopenia. More work is required to elucidate the impact of disuse on basal and postprandial rates of muscle protein synthesis and breakdown. Such information will provide novel targets for nutritional interventions to further attenuate muscle disuse atrophy and, as such, support healthy aging.
    Nutrition Reviews 04/2013; 71(4):195-208. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure-function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
    Amino Acids 03/2011; 40(5):1271-96. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Periods of immobilisation are often associated with pathologies and/or ageing. These periods of muscle disuse induce muscle atrophy which could worsen the pathology or elderly frailty. If muscle mass loss has positive effects in the short term, a sustained/uncontrolled muscle mass loss is deleterious for health. Muscle mass recovery following immobilisation-induced atrophy could be critical, particularly when it is uncompleted as observed during ageing. Exercise, the best way to recover muscle mass, is not always applicable. So, other approaches such as nutritional strategies are needed to limit muscle wasting and to improve muscle mass recovery in such situations. The present review discusses mechanisms involved in muscle atrophy following disuse and during recovery and emphasises the effect of age in these mechanisms. In addition, the efficiency of nutritional strategies proposed to limit muscle mass loss during disuse and to improve protein gain during recovery (leucine supplementation, whey proteins, antioxidants and anti-inflammatory compounds, energy intake) is also discussed.
    Nutrition Research Reviews 08/2013; · 5.50 Impact Factor