p53 Regulates Hematopoietic Stem Cell Quiescence

Molecular Phamacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
Cell stem cell (Impact Factor: 22.15). 02/2009; 4(1):37-48. DOI: 10.1016/j.stem.2008.11.006
Source: PubMed

ABSTRACT The importance of the p53 protein in the cellular response to DNA damage is well known, but its function during steady-state hematopoiesis has not been established. We have defined a critical role of p53 in regulating hematopoietic stem cell quiescence, especially in promoting the enhanced quiescence seen in HSCs that lack the MEF/ELF4 transcription factor. Transcription profiling of HSCs isolated from wild-type and p53 null mice identified Gfi-1 and Necdin as p53 target genes, and using lentiviral vectors to upregulate or knockdown the expression of these genes, we show their importance in regulating HSC quiescence. Establishing the role of p53 (and its target genes) in controlling the cell-cycle entry of HSCs may lead to therapeutic strategies capable of eliminating quiescent cancer (stem) cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The age-dependent decline in the self-renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age-dependent decline of stem cell self-renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2-deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2-deficient mice had a significantly better repopulating capacity than aged wild-type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2-deficient HSCs exhibited elevated long-term self-renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self-renewal and aging.
    Aging cell 02/2014; DOI:10.1111/acel.12195 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Necdin (NDN) expression is downregulated in telomerase-immortalised normal human urothelial cells. Telomerase-immortalised normal human urothelial cells have no detected genetic alterations. Accordingly, many of the genes whose expression is altered following immortalisation are those for which epigenetic silencing is reported. Methods: NDN expression was examined in normal tissues and tumour cell lines by quantitative real-time PCR and immunoblotting. Immunohistochemistry was performed on urothelial carcinoma (UC). Urothelial carcinoma and UC cell lines were subject to HumanMethylation27 BeadChip Array-based methylation analyses. Mutation screening was performed. The functional significance of NDN expression was investigated using retroviral-mediated downregulation or overexpression. Results: NDN protein was widely expressed in normal tissues. Loss of expression was observed in 38 out of 44 (86%) of UC cell lines and 19 out of 25 (76%) of non-UC cell lines. Loss of NDN protein was found in the majority of primary UC. Oncomine analysis demonstrated downregulation of expression in multiple tumour types. In UC, tumour-specific hypermethylation of NDN and key CpG sites where hypermethylation correlated with reduced expression were identified. Six novel mutations, including some of predicted functional significance, were identified in colorectal and ovarian cancer cell lines. Functional studies showed that NDN could suppress colony formation at low cell density and affect anchorage-independent growth and anoikis in vitro. Conclusion: NDN is a novel tumour suppressor candidate that is downregulated and hypermethylated or mutated in cancer.
    British Journal of Cancer 04/2013; 108(6):1368-77. DOI:10.1038/bjc.2013.104 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factors play important roles in lymphopoiesis. We have previously demonstrated that Bcl11a is essential for normal lymphocyte development in the mouse embryo. We report here that, in the adult mouse, Bcl11a is expressed in most hematopoietic cells and is highly enriched in B cells, early T cell progenitors, common lymphoid progenitors (CLPs), and hematopoietic stem cells (HSCs). In the adult mouse, Bcl11a deletion causes apoptosis in early B cells and CLPs and completely abolishes the lymphoid development potential of HSCs to B, T, and NK cells. Myeloid development, in contrast, is not obviously affected by the loss of Bcl11a. Bcl11a regulates expression of Bcl2, Bcl2-xL, and Mdm2, which inhibits p53 activities. Overexpression of Bcl2 and Mdm2, or p53 deficiency, rescues both lethality and proliferative defects in Bcl11a-deficient early B cells and enables the mutant CLPs to differentiate to lymphocytes. Bcl11a is therefore essential for lymphopoiesis and negatively regulates p53 activities. Deletion of Bcl11a may represent a new approach for generating a mouse model that completely lacks an adaptive immune system.
    Journal of Experimental Medicine 12/2012; 209(13). DOI:10.1084/jem.20121846 · 13.91 Impact Factor