Laromustine, a sulfonyl hydrolyzing alkylating prodrug for cancer therapy.

Service des Maladies du Sang, Centre François Magendie, Hôpital Haut-Lévêque, Avenue de Magellan, 33604 Pessac CEDEX, France.
IDrugs: the investigational drugs journal (Impact Factor: 2.33). 02/2009; 12(1):39-53.
Source: PubMed

ABSTRACT Laromustine (Onrigin), under development by Vion Pharmaceuticals Inc, belongs to the sulfonylhydrazine class of alkylating agents and is in clinical development for the treatment of malignancies. Laromustine is a prodrug that yields a chloroethylating compound (VNP-4090-CE) and a carbamoylating compound (methyl isocyanate). The antineoplastic effect of laromustine is attributed primarily to the chloroethylating species, which causes the preferential alkylation of DNA at the O6 position of guanine, a lesion that results in interstrand crosslinks and, eventually, cell death. The carbamoylating species contributes to antitumor activity by inhibiting the DNA repair protein O6-alkylguanine transferase. Early phase I clinical trials in patients with solid tumors indicated that laromustine was associated with myelosuppression; few extramedullary toxicities were observed, indicating potential efficacy for the treatment of hematological malignancies. Phase II trials have been completed in patients with previously untreated acute myelogenous leukemia (AML), high-risk myelodysplastic syndrome (MDS) and relapsed AML. The most encouraging results were observed in patients over 60 years of age with poor-risk de novo AML for which no standard treatment exists. Laromustine is currently in phase II/III trials for AML and phase II trials for MDS and solid tumors. Laromustine appears to be a promising agent that will add to the armamentarium of drugs available to treat patients who do not respond to, or are not fit for, intensive chemotherapy, such as elderly individuals.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preliminary therapeutic successes have prompted a new wave of clinical trials enrolling patients with myelodysplastic syndromes (MDS), using compounds with a broad range of potential mechanisms of action. This article discusses several of the agents currently in development for MDS, reviewing clinical trial data related to five classes of novel therapeutics: clofarabine, a halogenated purine nucleoside analog; ezatiostat (TLK199), a glutathione analog that indirectly activates c-Jun kinase; tipifarnib, a farnesyltransferase inhibitor; laromustine (cloretazine), an alkylating agent with a metabolite that inhibits one mechanism of DNA damage repair; and eight drugs that inhibit histone deacetylase. Although MDS are still difficult clinical problems, and most patients with MDS still succumb to disease-related complications within 3 to 5 years of diagnosis, ongoing development of novel agents promises that there will be new treatment options for patients within the next 5 to 10 years.
    Hematology/oncology clinics of North America 04/2010; 24(2):423-41. DOI:10.1016/j.hoc.2010.02.010 · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To most effectively treat cancer it may be necessary to preferentially destroy tumor tissue while sparing normal tissues. One strategy to accomplish this is to selectively cripple the involved tumor resistance mechanisms, thereby allowing the affected anticancer drugs to gain therapeutic efficacy. Such an approach is exemplified by our design and synthesis of the intracellular hypoxic cell activated methylating agent, 1,2-bis(methylsulfonyl)-1-methyl-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS900) that targets the O-6 position of guanine in DNA. KS900 is markedly more cytotoxic in clonogenic experiments under conditions of oxygen deficiency than the non-intracellularly activated agents KS90, and 90M, when tested in O(6)-alkylguanine-DNA alkyltransferase (AGT) non-expressing cells (EMT6 mouse mammary carcinoma, CHO/AA8 hamster ovary, and U251 human glioma), and than temozolomide when tested in AGT expressing cells (DU145 human prostate carcinoma). Furthermore, KS900 more efficiently ablates AGT in HL-60 human leukemia and DU145 cells than the spontaneous globally activated methylating agent KS90, with an IC(50) value over 9-fold lower than KS90. Finally, KS900 under oxygen-deficient conditions selectively sensitizes DU145 cells to the chloroethylating agent, onrigin, through the ablation of the resistance protein AGT. Thus, under hypoxia, KS900 is more cytotoxic at substantially lower concentrations than methylating agents such as temozolomide that are not preferentially activated in neoplastic cells by intracellular reductase catalysts. The necessity for intracellular activation of KS900 permits substantially greater cytotoxic activity against cells containing the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT) than agents such as temozolomide. Furthermore, the hypoxia-directed intracellular activation of KS900 allows it to preferentially ablate AGT pools under the oxygen-deficient conditions that are present in malignant tissue.
    Biochemical pharmacology 03/2011; 81(10):1201-10. DOI:10.1016/j.bcp.2011.02.019 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prodrugs of the short-lived chloroethylating agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) and its methylating analog 1,2-bis(methylsulfonyl)-1-(methyl)hydrazine (KS90) are potentially useful anticancer agents. This class of agents frequently yields higher ratios of therapeutically active oxophilic electrophiles responsible for DNA O6-guanine alkylations to other electrophiles with lower therapeutic relevance than the nitrosoureas. This results in improved selectivity towards tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine, which leads to the formation of a DNA-DNA interstrand cross-link, accounts for the bulk of the anticancer activity of 90CE prodrugs. Herein, we describe a new decomposition pathway that is available to 90CE, but not to its methylating counterpart. This pathway appears to be subject to general/acid base catalysis with phosphate (Pi), phosphomonoesters, and phosphodiesters, being particularly effective. This pathway does not yield a chloroethylating species and results in a major change in nucleophile preference, since thiophilic rather than oxophilic electrophiles are produced. Thus, a Pi concentration dependent decrease in DNA-DNA interstand cross-link formation was observed. Changes in 90CE decomposition products but not alkylation kinetics occurred in the presence of Pi, since the pre-branch point elimination of the N-1 methanesulfinate moiety remained the rate-limiting step. The Pi catalyzed route is expected to dominate at Pi and phosphoester concentrations totaling > 25-35 mM. In view of the abundance of Pi and phosphoesters in cells, this pathway may have important effects on agent toxicity, tumor selectivity, and resistance to prodrugs of 90CE. Furthermore, it may be possible to design analogs that diminish this thiophile-generating pathway, which is likely superfluous at best and potentially detrimental to the targeting of hypoxic regions where Pi concentrations can be significantly elevated.
    Chemical Research in Toxicology 03/2014; DOI:10.1021/tx500004y · 4.19 Impact Factor