Article

POLISSACARÍDEOS DE RESERVA DE PAREDE CELULAR EM SEMENTES. ESTRUTURA, METABOLISMO, FUNÇÕES E ASPECTOS ECOLÓGICOS1

01/2000;

ABSTRACT RESUMO - Entre os principais polissacarídeos de reserva em plantas estão o amido, os frutanos e os polissacarídeos de reserva de parede celular. Estes últimos ocorrem principalmente em sementes e podem ser classificados de acordo com suas estruturas químicas em mananos, xiloglucanos e galactanos. Apesar das diferenças marcantes nas estruturas químicas, os polímeros dos três grupos apresentam propriedades físico-químicas semelhantes. Eles possuem em comum a função de reserva, uma vez que são completamente degradados após a germinação da semente e seus produtos são utilizados como fontes de carbono e energia para o crescimento inicial das plântulas. Por outro lado, cada um deles apresenta funções secundárias tais como o controle da embebição e distribuição de água nos tecidos das sementes e o controle da expansão celular dos cotilédones. Na presente revisão, apresentamos uma atualização sobre as estruturas químicas, ocorrência e metabolismo desses polissacarídeos em sementes. São discutidos alguns pontos de controle de sua deposição e mobilização, bem como suas funções biológicas e papéis ecológicos. Estes aspectos são abordados com ênfase nos possíveis mecanismos evolutivos que levaram às alterações nas relações estrutura-função nas paredes celulares primárias de plantas superiores e ao surgimento das paredes de reserva. TERMOS ADICIONAIS PARA INDEXAÇÃO: Parede celular, polissacarídeos, reserva, sementes,

0 Bookmarks
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
    Annals of Botany 10/2010; 106(4):607-16. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coffee is one of the most consumed beverages in the world. Due to its commercial importance, the detection of impurities and foreign matters has been a constant concern in fraud verification, especially because it is difficult to percept adulterations with the naked eye in samples of roasted and ground coffee. In Brazil, the most common additions are roasted materials, such as husks, sticks, corn, wheat middling, soybean, and more recently - acai palm seeds. The performance and correlation of two chromatographic methods, HPLC-HPAEC-PAD and post-column derivatization HPLC-UV-Vis, were compared for carbohydrate analysis in coffee samples. To verify the correlation between the two methods, the principal component analysis for the same mix of triticale and acai seeds in different proportions with coffee was employed. The performance for detecting adulterations in roasted and ground coffee of the two methods was compared.
    Food Chemistry 03/2014; 146:353-62. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xylopia aromatica is a native species from Brazil's "Cerrado", recommended for restoration ecology and also as a medicine. Its seeds have embryos with morphophysiological dormancy, making nursery propagation difficult. The objective of this study was to verify the efficiency of X-ray and tetrazolium tests for evaluating the viability of three seed lots, stored for different periods. All seeds were X-rayed (13 kV, 350 seconds) and samples used for tetrazolium and germination tests. In the tetrazolium test, seeds were submitted to six treatments at two temperatures (25 and 30 °C) with imbibition in distilled water and immersion in three concentrations of tetrazolium solution (0.5, 0.75 and 1%) at the two imbibition temperatures. Seeds for the germination test were placed for imbibition in distilled water and a 500 ppm Promalin® (6-Benzyladenine + GA4 + GA7) solution and later sown in sterilized sand. The embryo could not be observed with the X-ray test. However, those seeds observed with an undamaged endosperm did not differ in the percentages of seeds with firm and stained endosperms observed in the tetrazolium test for all the lots. The tetrazolium test is efficient for evaluating seed viability, principally if imbibed at 30 °C and immersed in a 0.5% solution at 30 °C.
    Revista Brasileira de Sementes 12/2011; 34(3):408-415.

Full-text

View
799 Downloads
Available from
May 20, 2014