Article

Sympathetic skin responses evoked by different stimuli modalities in spinal cord injury patients.

Department of Neurology and Neurorehabilitation, Instituto Guttmann, Badalona, Barcelona, Spain.
Neurorehabilitation and neural repair (Impact Factor: 4.28). 02/2009; 23(6):553-8. DOI: 10.1177/1545968308328721
Source: PubMed

ABSTRACT By using a combination of physiological and electrical peripheral nerve stimuli, the authors aimed to characterize the expected dysfunction of the circuits responsible for sympathetic skin response (SSR) in persons with spinal cord injury (SCI).
The authors examined SSR induced in the hand and foot in 50 SCI patients and 15 age-matched and gender-matched healthy volunteers. SSR was induced by deep inhalation, unexpected acoustic stimuli, brisk hand muscle contraction, and median and peroneal nerve electrical stimulation (PNS).
SSRs to any stimulus modality were absent in hand and foot in patients with complete SCI above the T4 level. They were present in the hand and absent in the foot in complete SCI patients at levels between T4 and T11 for all stimuli modalities except PNS. The elicitability of SSR was lower with peroneal nerve stimulation than the other stimuli in hand and foot. The mean latency difference between SSRs of the hand and foot was significantly longer in patients than in controls, regardless of stimulus modality. The amplitude of SSR was larger in volunteers than in patients.
SSR to various stimuli confirms the importance of supraspinal centers and the integrity of sympathetic descending pathways. Simultaneous recording of the SSR in the hands and feet provides information about the degree of sympathetic impairment possibly in the efferent pathway. To monitor spontaneous recovery or the efficacy of a drug or biological therapeutic intervention, changes in the latency delay between the hand and foot may be valuable.

0 Bookmarks
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Forty-three patients with chronic spinal cord injury for over 6 months were transplanted with bryonic olfactory ensheathing cells, 2-4 × 10(6), into multiple sites in the injured area under the surgical microscope. The sympathetic skin response in patients was measured with an electromyography/evoked potential instrument 1 day before transplantation and 3-8 weeks after transtion. Spinal nerve function of patients was assessed using the American Spinal Injury Association impairment scale. The sympathetic skin response was elicited in 32 cases before olfactory ensheathing cell transplantation, while it was observed in 34 cases after transplantation. tantly, sympathetic skin response latency decreased significantly and amplitude increased cantly after transplantation. Transplantation of olfactory ensheathing cells also improved American Spinal Injury Association scores for movement, pain and light touch. Our findings indicate that factory ensheathing cell transplantation improves motor, sensory and autonomic nerve functions in patients with chronic spinal cord injury.
    Neural Regeneration Research 10/2013; 8(30):2849-55. · 0.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reappearance of sympathetic skin response (SSR) below lesion is reported in a patient with a complete thoracic-9 spinal cord injury 6months following injury. SSR was elicited by electrical stimulation of supraorbital nerve (SON) and pudendal nerve (PN). SON stimulation induced SSRs only in the hand. SSRs were initially absent below the level of SCI but reappeared only with PN stimulation. This case suggests that 6months following a complete lesion, the isolated spinal cord can generate a SSR. Possible underlying mechanisms and implications for autonomic plasticity below spinal lesion are discussed in view of the literature.
    Autonomic neuroscience: basic & clinical 12/2013; · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that selective sacral roots rhizotomy is effective for relieving the neurogenic bladder associated with spinal cord injury. The goal of this study is to review the surgical anatomy of the lumbosacral nerve rootlets and to provide some morphological bases for highly selective sacral roots rhizotomy. Spinal cord dissections were performed on five cadavers under surgical microscope. At each spinal cord segment, we recorded the number, diameter and length of the rootlets, subbundles and bundles from the L1 to S2 spinal segments, and the length of the dorsal/ventral root entry zone. Peripheral nervous system myelin was examined by immunohistochemistry. We found: (1) the ventral or the dorsal root of the lumbosacral segment of the spinal cord was divided into one to three nerve bundles and each bundle was subdivided into one to three subbundles. Each subbundle further gave out two to three rootlets connected with the spinal cord; (2) there were no significant differences in the number of rootlets within the L1 to S2 segments, but the size of rootlets and the length of nerve roots varied (P < 0.05); and (3) the more myelinated fibers a rootlet contained, the larger transection area it had. The area of peripheral nervous system myelin positive cells and the total area of rootlets were correlated (P < 0.001). Thus, during highly selective sacral roots rhizotomy, the ventral and dorsal roots can be divided into several bundles of rootlets, and we could initially distinct the rootlets by their diameters.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 12/2010; 293(12):2123-8. · 1.34 Impact Factor