Modification of surfactant protein D by reactive oxygen-nitrogen intermediates is accompanied by loss of aggregating activity, in vitro and in vivo

Department of Anesthesiology, University of Alabama, Birmingham, Alabama, USA.
The FASEB Journal (Impact Factor: 5.48). 02/2009; 23(5):1415-30. DOI: 10.1096/fj.08-120568
Source: PubMed

ABSTRACT Surfactant protein D (SP-D) is an important effector of innate immunity. We have previously shown that SP-D accumulates at sites of acute bacterial infection and neutrophil infiltration, a setting associated with the release of reactive species such as peroxynitrite. Incubation of native SP-D or trimeric SP-D lectin domains (NCRDs) with peroxynitrite resulted in nitration and nondisulfide cross-linking. Modifications were blocked by peroxynitrite scavengers or pH inactivation of peroxynitrite, and mass spectroscopy confirmed nitration of conserved tyrosine residues within the C-terminal neck and lectin domains. Mutant NCRDs lacking one or more of the tyrosines allowed us to demonstrate preferential nitration of Tyr314 and the formation of Tyr228-dependent cross-links. Although there was no effect of peroxynitrite or tyrosine mutations on lectin activity, incubation of SP-D dodecamers or murine lavage with peroxynitrite decreased the SP-D-dependent aggregation of lipopolysaccharide-coated beads, supporting our hypothesis that defective aggregation results from abnormal cross-linking. We also observed nitration, cross-linking of SP-D, and a significant decrease in SP-D-dependent aggregating activity in the lavage of mice acutely exposed to nitrogen dioxide. Thus, modification of SP-D by reactive oxygen-nitrogen species could contribute to alterations in the structure and function of SP-D at sites of inflammation in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6 J mice underwent whole-body exposure to an effective 60 ppm-hour Cl2 dose, and were sacrificed 3, 24 and 48 hours later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 hours, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 hours. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3- or NO2-. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 hours, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation.
    Toxicology and Applied Pharmacology 07/2014; DOI:10.1016/j.taap.2014.02.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a coagonist at N-methyl-D-aspartate (NMDA) receptors in the forebrain. Our previous data showed that an apparent SR dimer resistant to sodium dodecyl sulfate and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, whereas superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys₆ and Cys₁₁₃ was identified in 3-morpholinosydnonimine hydrochloride (SIN-1)-treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback in which the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors.
    Journal of Neuroscience Research 06/2012; 90(6):1218-29. DOI:10.1002/jnr.22832
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surfactant protein-D (SP-D) is a calcium dependent lectin in the innate immune system that facilitates clearance of microbes. The protein is associated with mucosal surfaces, and also found in bronchoalveolar lavage, serum and amniotic fluid. Human SP-D includes trimeric subunits and multimeric assemblies of trimeric subunits, which are stabilized by N-terminal interchain disulfide crosslinks. An N-terminal structural polymorphism (Met11Thr) and associated O-glycosylation are previously shown accompanied by incomplete multimerization and with a relative low proportion of multimeric Thr11 SP-D compared to Met11 SP-D. Multimerization has proven important for enhancement of microbial phagocytosis. In the present study defined multimeric forms of Met11Thr SP-D were isolated from human amniotic fluid. Implementation of ManNAc-affinity chromatography allowed high recovery of natural trimeric SP-D subunits. However, affinity chromatography increased the relative proportion of multimers at the expense of natural trimeric subunits. Multimeric SP-D partially disassembled to form trimeric subunits. The resulting distribution of structural forms was independent of the Met11Thr genotype. Trimeric and multimeric SP-D appeared with distinct patterns of disulphide crosslinking, which partly changed according to interconversion between the structural forms. Solid phase assays demonstrated that trimeric SP-D subunits showed greater binding to LPS and PGN, but lower binding to mannan and LTA, than SP-D multimers. Trimeric SP-D subunits also showed greater binding to endogenous lipoproteins: LDL, oxLDL, and HDL, than multimeric SP-D. In conclusion, purified trimeric and multimeric SP-D represent separate and only partly interconvertible molecular populations with distinct biochemical properties.
    Molecular Immunology 08/2009; 46(15):3060-9. DOI:10.1016/j.molimm.2009.06.005