Microbeam-integrated multiphoton imaging system

Center for Radiological Research, Columbia University, New York, New York 10032, USA.
The Review of scientific instruments (Impact Factor: 1.58). 01/2009; 79(12):123707. DOI: 10.1063/1.3043439
Source: PubMed

ABSTRACT Multiphoton microscopy has been added to the array of imaging techniques at the endstation for the Microbeam II cell irradiator at Columbia University's Radiological Research Accelerator Facility (RARAF). This three-dimensional (3D), laser-scanning microscope functions through multiphoton excitation, providing an enhanced imaging routine during radiation experiments with tissuelike samples, such as small living animals and organisms. Studies at RARAF focus on radiation effects; hence, this multiphoton microscope was designed to observe postirradiation cellular dynamics. This multiphoton microscope was custom designed into an existing Nikon Eclipse E600-FN research fluorescence microscope on the irradiation platform. Design details and biology applications using this enhanced 3D-imaging technique at RARAF are reviewed.


Available from: Alan W. Bigelow, May 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.
    08/2010; 1336:351-355. DOI:10.1063/1.3586118
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cell biology studies it is often important to avoid the damaging effects caused by fluorescent stains or UV-light. Immersion Mirau Interferometry (IMI) is an epi-illumination label-free imaging technique developed at the Columbia University Radiological Research Accelerator Facility. It is based on the principles of phase-shifting interferometry (PSI) and represents a novel approach for interferometric imaging of living cells in medium. To accommodate the use of medium, a custom immersion Mirau interferometric attachment was designed and built in-house. The space between the reference mirror and the beam splitter is filled with liquid to ensure identical optical paths in the test and reference arms. The interferometer is mountable onto a microscope objective. The greatest limitation of standard PSI is the sensitivity to environmental vibrations, because it requires consecutive acquisition of several interferograms. We are developing Simultaneous Immersion Mirau Interferometry (SIMI), which facilitates simultaneous acquisition of all interferograms and eliminates the effects of vibration. Polarization optics, incorporated into the design, introduces a phase delay to one of the components of the test beam. This enables simultaneous creation and spatial separation of two interferograms, which are combined with the background image to reconstruct the intensity map of the specimen. Our results of imaging live and fixed cells with IMI and SIMI show that this system produces images of a quality that is sufficient to perform targeted cellular irradiation experiments.
    Proc SPIE 02/2010; 7568. DOI:10.1117/12.855651
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Radiological Research Accelerator Facility at Columbia University has recently added a UV microspot irradiator to a microbeam irradiation platform. This UV microspot irradiator applies multiphoton excitation at the focal point of an incident laser as the source for cell damage, and with this approach, a single cell within a 3D sample can be targeted and exposed to damaging UV. The UV microspot's ability to impart cellular damage within 3D is an advantage over all other microbeam techniques, which instead impart damage to numerous cells along microbeam tracks. This short communication is an overview, and a description of the UV microspot including the following applications and demonstrations of selective damage to live single cell targets: DNA damage foci formation, patterned irradiation, photoactivation, targeting of mitochondria, and targeting of individual cardiomyocytes in a live zebrafish embryo.
    Biophysik 05/2013; 52(3). DOI:10.1007/s00411-013-0474-9 · 1.58 Impact Factor