Article

Field static load tests on drilled shaft founded on or socketed into rock

Canadian Geotechnical Journal (Impact Factor: 1.21). 02/2011; 37(6):1283-1294. DOI: 10.1139/cgj-37-6-1283

ABSTRACT The Mass Transit Railway Corporation proposes to construct the Tseung Kwan O Depot (TKD) within Area 86 reclamation at Tseung Kwan O as part of the Tseung Kwan O Extension. The proposed foundation for the TKD comprises about 1000 large-diameter, bored, cast in situ, drilled shafts founded on or socketed into rock. To confirm the design allowable end bearing capacity and rock socket side resistance for the drilled shaft foundations, two test piles were constructed and tested. Both test piles were instrumented with strain gauges and rod extensometers. This paper presents the static compressive load test results on both test piles. The test results indicate that an end bearing capacity of 20.8 MPa (design allowable 7.5 MPa) and rock socket side resistance 2.63 MPa (design allowable 0.75 MPa) are achieved during the pile load tests with no sign of failure.Key words: drilled shaft, static load test, end bearing capacity, rock socket, rock socket side resistance, load transfer.

0 Followers
 · 
161 Views
  • International Journal of Rock Mechanics and Mining Sciences 07/2006; 43(5):826-830. DOI:10.1016/j.ijrmms.2005.11.008 · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
    04/2013; 20(4). DOI:10.1007/s11771-013-1586-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using 2D elasto-plastic finite element analysis. Slippage and shear-load transfer behavior at the pile–soil interface are investigated by using a user-subroutine interface model (FRIC). It is shown that the coupled soil resistance acts as pile-toe settlement as the shaft resistance is increased to its ultimate limit state. Based on the results obtained, the coupling effect is closely related to the ratio of the pile diameter to soil modulus (D/Es) and the ratio of total shaft resistance against total applied load (Rs/Q). Through comparison with field case studies, the 2D numerical analysis reasonably estimated load transfer of pile and coupling effect, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.
    Computers and Geotechnics 04/2009; 36(3):446-453. DOI:10.1016/j.compgeo.2008.08.012 · 1.65 Impact Factor