Article

Field static load tests on drilled shaft founded on or socketed into rock

Canadian Geotechnical Journal (Impact Factor: 0.81). 02/2011; 37(6):1283-1294. DOI: 10.1139/cgj-37-6-1283

ABSTRACT The Mass Transit Railway Corporation proposes to construct the Tseung Kwan O Depot (TKD) within Area 86 reclamation at Tseung Kwan O as part of the Tseung Kwan O Extension. The proposed foundation for the TKD comprises about 1000 large-diameter, bored, cast in situ, drilled shafts founded on or socketed into rock. To confirm the design allowable end bearing capacity and rock socket side resistance for the drilled shaft foundations, two test piles were constructed and tested. Both test piles were instrumented with strain gauges and rod extensometers. This paper presents the static compressive load test results on both test piles. The test results indicate that an end bearing capacity of 20.8 MPa (design allowable 7.5 MPa) and rock socket side resistance 2.63 MPa (design allowable 0.75 MPa) are achieved during the pile load tests with no sign of failure.Key words: drilled shaft, static load test, end bearing capacity, rock socket, rock socket side resistance, load transfer.

0 Bookmarks
 · 
114 Views
  • International Journal of Rock Mechanics and Mining Sciences - INT J ROCK MECH MINING SCI. 01/2006; 43(5):826-830.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a shear load transfer function and an analytical method for estimating the load transfer characteristics of rock-socketed drilled shafts subjected to axial loads. A shear load transfer (f–w) function of rock-socketed drilled shafts is proposed based on the constant normal stiffness (CNS) direct shear tests. It is presented in terms of the borehole roughness and the geological strength index (GSI) so that the structural discontinuities and the surface conditions of the rock mass can be considered. An analytical method that takes into account the coupled soil resistance effects is proposed using a modified Mindlin’s point load solution. Through comparisons with load test results, the proposed methodology is in good agreement with the general trend observed in in situ measurements and represents an improvement in the prediction of the shear behavior of rock-socketed drilled shafts.
    Rock Mechanics and Rock Engineering 43(1):41-54. · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using 2D elasto-plastic finite element analysis. Slippage and shear-load transfer behavior at the pile–soil interface are investigated by using a user-subroutine interface model (FRIC). It is shown that the coupled soil resistance acts as pile-toe settlement as the shaft resistance is increased to its ultimate limit state. Based on the results obtained, the coupling effect is closely related to the ratio of the pile diameter to soil modulus (D/Es) and the ratio of total shaft resistance against total applied load (Rs/Q). Through comparison with field case studies, the 2D numerical analysis reasonably estimated load transfer of pile and coupling effect, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.
    Computers and Geotechnics - COMPUT GEOTECH. 01/2009; 36(3):446-453.