p190B, a Rho-GTPase-activating Protein, Is Differentially Expressed in Terminal End Buds and Breast Cancer1

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research 08/2000; 11(7).

ABSTRACT Microdissection and differential display PCR were used to identify genes preferentially expressed in the highly proliferative terminal end buds (TEBs) in the mammary gland of 45-day-old virgin rats. One clone exhibited 87% homology to the human p190-B gene encoding a novel Rho-Gap. Using in situ hybridization, p190-B was detected in both the TEBs and the terminal ducts, with the highest expression observed in the outer layer of TEBs. During normal mammary gland development, p190-B mRNA expression was highest in the virgin mammary gland and decreased during late pregnancy and lactation. Interestingly, increased levels of p190-B mRNA relative to the normal mammary gland were seen in a subset of murine mammary tumors that appeared to be less well differentiated and potentially more aggressive. Transient transfection of a p190-B expression construct into MCF-10A human mammary epithelial cells resulted in disruption of the actin cytoskeleton, which suggests a role for p190-B in regulating the signaling pathways that influence cell migration and invasion. These results suggest that p190-B may be required for virgin mammary gland development, and its aberrant expression may occur in breast cancer.

  • Source
    • "Previously it was reported that p190-B is ubiquitously expressed in most adult tissues (Burbelo et al., 1995). In contrast, p190-B is developmentally regulated throughout postnatal mammary gland development (Chakravarty et al., 2000). Lack of ductal outgrowths from p190-B-deficient transplants indicated that its expression might also be spatiotemporally restricted during embryonic development. "
    [Show abstract] [Hide abstract]
    ABSTRACT: P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embryonic mammary bud development. Overall, p190-B-deficient buds were smaller in size, contained fewer cells, and displayed characteristics of impaired mesenchymal proliferation and differentiation. Consistent with the reported effects of p190-B deletion on IGF-1R signaling, IGF-1R-deficient embryos also displayed a similar small mammary bud phenotype. However, unlike the p190-B-deficient embryos, the IGF-1R-deficient embryos exhibited decreased epithelial proliferation and did not display mesenchymal defects. Because both IGF and p190-B signaling affect IRS-1/2, we examined IRS-1/2 double knockout embryonic mammary buds. These embryos displayed major defects similar to the p190-B-deficient embryos including smaller bud size. Importantly, like the p190-B-deficient buds, proliferation of the IRS-1/2-deficient mesenchyme was impaired. These results indicate that IGF signaling through p190-B and IRS proteins is critical for mammary bud formation and ensuing epithelial-mesenchymal interactions necessary to sustain mammary bud morphogenesis.
    Developmental Biology 10/2007; 309(1):137-49. DOI:10.1016/j.ydbio.2007.07.002 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular movement is central to invasion. The Rho family of small GTPases co-ordinate the cytoskeletal and adhesion modelling within cells that is crucial for normal migratory responses. Consequently, Rho proteins, and their regulators and effectors, are targets for subversion during oncogenic transformation and tumour development. Recent findings have thrown light on how actin regulators may be linked to oncogenesis and the development of cancer.
    Current Opinion in Genetics & Development 03/2002; 12(1):36-43. DOI:10.1016/S0959-437X(01)00261-1 · 8.57 Impact Factor
Show more