Article

The Role of the Immune Response in Age-Related Macular Degeneration

Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
International journal of inflammation 05/2013; 2013:348092. DOI: 10.1155/2013/348092
Source: PubMed

ABSTRACT Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries; with the aging population, the negative health impacts and costs of the disease will increase dramatically over the next decade. Although the exact cause of AMD is unknown, genetic studies have implicated the complement system as well as other immune responses in disease pathogenesis and severity. Furthermore, histologic studies have shown the presence of macrophages, lymphocytes, and mast cells, as well as fibroblasts, in both atrophic lesions and with retinal neovascularization. This review summarizes discussions from the fifth annual conference of the Arnold and Mabel Beckman Initiative for Macular Research by the Inflammation and Immune Response Task Force. These deliberations focused on the role of inflammatory immune responses, including complement, inflammasomes, adaptive immune responses, and para-inflammation, unanswered questions and studies to address these questions, and potential immune-related therapeutic targets for AMD.

Download full-text

Full-text

Available from: John P Atkinson, Sep 17, 2014
1 Follower
 · 
74 Views
  • Source
    • "Several studies support the hypothesis that the immune system is involved in the pathogenesis of AMD, in concert with, or in addition to, other factors (Ambati et al., 2013; Whitcup et al., 2013). One factor that has captured our interest is bA3/A1-crystallin, which has been reported to be present in human drusen (Crabb et al., 2002), a precursor to AMD. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although chronic inflammation is believed to contribute to the pathology of age-related macular degeneration (AMD), knowledge regarding the events that elicit the change from para-inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin-2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1-crystallin specifically in RPE, have defective lysosomal clearance. The age-related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C-C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD-like pathology.
    Aging cell 09/2014; 13(6). DOI:10.1111/acel.12274 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.
    PLoS ONE 08/2013; 8(8):e72935. DOI:10.1371/journal.pone.0072935 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are rapidly conditioned by cognate and soluble signals to acquire phenotypes that deliver specific functions during inflammation, wound healing and angiogenesis. Whether inhibitory CD200R signaling regulates pro-angiogenic macrophage phenotypes with the potential to suppress ocular neovascularization is unknown. CD200R-deficient bone marrow derived macrophages (BMMΦ) were used to demonstrate that macrophages lacking this inhibitory receptor exhibit enhanced levels of Vegfa, Arg-1 and Il-1β when stimulated with PGE2 or RPE-conditioned (PGE2-enriched) media. Endothelial tube formation in HUVECs was increased when co-cultured with PGE2-conditioned CD200R(-/-) BMMΦ, and laser-induced choroidal neovascularization was enhanced in CD200R-deficient mice. In corroboration, signaling through CD200R results in the down-regulation of BMMΦ angiogenic and pro-inflammatory phenotypes. Translational potential of this pathway was investigated in the laser-induced model of choroidal neovascularization. Local delivery of a CD200R agonist mAb to target myeloid infiltrate alters macrophage phenotype and inhibits pro-angiogenic gene expression, which suppresses pathological angiogenesis and CNV development.
    Scientific Reports 10/2013; 3:3072. DOI:10.1038/srep03072 · 5.58 Impact Factor
Show more