Article

Turnip mosaic virus genome-linked protein VPg binds C-terminal region of cap-bound initiation factor 4E orthologue without exhibiting host cellular specificity.

Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan.
Journal of biochemistry (Impact Factor: 1.95). 02/2009; 145(3):299-307. DOI:10.1093/jb/mvn180
Source: PubMed

ABSTRACT To investigate the binding specificity of turnip mosaic virus (TuMV) viral protein-genome linked (VPg) with translation initiation factor 4E, we evaluated here the kinetic parameters for the interactions of human eIF4E, Caenorhabditis elegans IFE-3 and IFE-5 and Arabidopsis eIFiso4E, by surface plasmon resonance (SPR). The results indicated that TuMV VPg does not show a binding preference for Arabidopsis eIFiso4E, even though it is from a host species whereas the other eIF4E orthologues are not. Surprisingly, the effect of m(7)GTP on both the rate constants and equilibrium binding constants for the interactions of VPg differed for the four eIF4E orthologues. In the case of eIFiso4E and IFE-3, m(7)GTP increased k(on), but for eIF4E and IFE-5, it decreased k(on). To provide insight into the structural basis for these differences in VPg binding, tertiary structures of the eIF4E orthologues were predicted on the basis of the previously determined crystal structure of m(7)GpppA-bound human eIF4E. The results suggested that in cap-bound eIF4E orthologues, the VPg binds to the C-terminal region, which constitutes one side of the entrance to the cap-binding pocket, whereas in the cap-free state, VPg binds to the widely opened cap-binding pocket and its surrounding region. The binding of VPg to the C-terminal region was confirmed by the SPR analyses of N- or C-terminal residues-deleted eIF4E orthologues.

0 0
 · 
0 Bookmarks
 · 
55 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The objective of This work is to present a polynomial model of Flash memory cell suitable for silicon diagnosis purpose. This model allows a fast study of the geometric parameters of a flash memory cell. The failing geometric parameter is diagnosed taking as input the threshold voltages of the cell extracted during the parametric test and in plotting failure scenario using our high level model.
    Non-Volatile Memory Technology Symposium, 2004; 12/2004
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Previous resistance analyses of Arabidopsis thaliana mutants knocked out for eukaryotic translation initiation factors showed that disruption of the At-eIF(iso)4E or both the At-eIF(iso)4G1 and At-eIF(iso)4G2 genes resulted in resistance against turnip mosaic virus (TuMV). This study selected TuMV virulent variants that overcame this resistance and showed that two independent mutations in the region coding for the viral genome-linked protein (VPg) were sufficient to restore TuMV virulence in At-eIF(iso)4E and At-eIF(iso)4G1xAt-eIF(iso)4G2 knockout plants. As a VPg-eIF(iso)4E interaction has been shown previously to be critical for TuMV infection, a systematic analysis of the interactions between A. thaliana eIF4Es and VPgs of virulent and avirulent TuMVs was performed. The results suggest that virulent TuMV variants may use an eIF4F-independent pathway.
    Journal of General Virology 10/2009; 91(Pt 1):288-93. · 3.13 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection. To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4E(S) bound to m(7)GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m(7)GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4E(R) and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m(7)GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation. The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4E alleles with the potential to convey novel virus resistance phenotypes.
    PLoS ONE 01/2011; 6(1):e15873. · 3.73 Impact Factor

Hayato Okade