Role of 3'-phosphoinositides in oncogenic KRAS-induced modulation of shape and motility of airway epithelial cells.

Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Pathology International (Impact Factor: 1.72). 02/2009; 59(1):28-37. DOI: 10.1111/j.1440-1827.2008.02321.x
Source: PubMed

ABSTRACT The authors' previous study demonstrated that oncogenic KRAS modulates the shape and motility of airway epithelial cells. To explore detailed mechanism mediating these events, the possible involvement of phosphatidylinositides (PIP) was investigated. The intracellular localization of PIP was visualized with a pleckstrin homology domain-enhanced green fluorescent protein (EGFP) construct. PIP accumulated at the leading edges of polarizing epithelial cells, while they co-localized with cortical actin at cell-cell contacts, suggesting that PIP play important roles in the cytoskeletal organization. Transduction of oncogenic KRAS induced multiple pseudopodia and disrupted cortical actin, enhancing motility. A mitogen activated protein kinase kinase (MEK) inhibitor reduced the accumulation of PIP at membranes and development of pseudopodia, and restored stable cortical actin, reducing the motility. A phosphoinositide 3-kinase (PI3K) inhibitor also reduced accumulation of PIP at membranes, formation of pseudopodia and motility, but its effect on cortical actin was indistinct. The KRAS V12/S35 mutant, activating only the MEK pathway, induced multiple pseudopodia and disrupted the cortical actin. The KRAS V12/C40 mutant, activating only the PI3K pathway, also induced pseudopodia, but its effect on cortical actin was obscure. Taken together, oncogenic KRAS could cause the accumulation of PIP via the PI3K and MEK pathways and modulate the cell shape and migration.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.
    Cellular Signalling 06/2002; 14(5):381-95. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase (PI3K)gamma and Dictyostelium PI3K are activated via G protein-coupled receptors through binding to the Gbetagamma subunit and Ras. However, the mechanistic role(s) of Gbetagamma and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gbeta null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P(3). Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras-guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.
    The Journal of Cell Biology 08/2007; 178(2):185-91. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major limitation in the study of vectorial ion transport, secretion, and differentiated function in the human airway epithelium has been the lack of suitable cell culture systems. Progress in this direction has been made through the transformation of primary cultured epithelial cells. However, these transformants tend to lose differentiated properties with increasing serial passage, particularly following crisis. The successful establishment of a postcrisis SV40 large T-antigen transformed epithelial cell line derived from human bronchial epithelium is described. This cell line, 16HBE14o-, retains differentiated epithelial morphology and functions. Cell cultures show the presence of tight junctions and cilia, and monolayers generate transepithelial resistance, as measured in Ussing chambers, and retain beta-adrenergic stimulation of cAMP-dependent chloride ion transport, measured either by 36Cl- efflux or as short-circuit current in Ussing chambers. The cells also increase chloride transport in response to bradykinin or calcium ionophore. In addition, 16HBE14o- cells express levels of both the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA and protein readily detectable by Northern and Western hybridization analysis, respectively. These cells provide a valuable resource for studying the modulation of CFTR and its role in regulation of chloride ion transport in human airway epithelium as well as other aspects of human airway cell biology.
    American Journal of Respiratory Cell and Molecular Biology 02/1994; 10(1):38-47. · 4.15 Impact Factor