Use of the Fused NS4A Peptide-NS3 Protease Domain To Study the Importance of the Helicase Domain for Protease Inhibitor Binding to Hepatitis C Virus NS3-NS4A

Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
Biochemistry (Impact Factor: 3.19). 02/2009; 48(4):744-53. DOI: 10.1021/bi801931e
Source: PubMed

ABSTRACT The NS3 protein of hepatitis C virus is unusual because it encodes two unrelated enzymatic activities in linked protease and helicase domains. It has also been intensively studied because inhibitors targeting its protease domain have potential to significantly improve treatment options for those infected with this virus. Many enzymological studies and inhibitor discovery programs have been carried out using the isolated protease domain in complex with a peptide derived from NS4A which stimulates activity. However, some recent publications have suggested that the NS3 helicase domain may influence inhibitor binding and thus suggest work should focus on the full-length NS3-NS4A protein. Here we present the characterization of a single-chain protease in which the NS4A peptide activator is linked to the N-terminus of the NS3 protease domain. This protein behaves well in solution, and its protease activity is very similar to that of full-length NS3-NS4A. We find that this fusion protein, as well as the noncovalent complex of the NS4A peptide with NS3, gives similar Ki values, spanning 3 orders of magnitude, for a set of 25 structurally diverse inhibitors. We also show that simultaneous mutation of three residues on the surface of the helicase domain which has been hypothesized to interact with the protease does not significantly affect enzymatic activity or inhibitor binding. Thus, the protease domain with the NS4A peptide, in a covalent or noncovalent complex, is a good model for the protease activity of native NS3-NS4A.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus is a blood-borne infection and the leading cause of chronic liver disease (including cirrhosis and cancer) and liver transplantation. Since the identification of HCV in 1989, there has been an extensive effort to identify and improve treatment options. An important milestone was reached in 2011 with the approval of the first-generation HCV NS3/4A protease inhibitors. However, new therapies are needed to improve cure rates, shorten treatment duration and improve tolerability. Here we summarize the extensive medicinal chemistry effort to develop novel P2 cyclopentane macrocyclic inhibitors guided by HCV NS3 protease assays, the cellular replicon system, structure-based design and a panel of DMPK assays. The selection of compound 29 (simeprevir, TMC435) as clinical candidate was based on its excellent biological, PK, and safety pharmacology profile. Compound 29 has recently been approved for treatment of chronic HCV infection in combination with peg-interferon-alfa and ribavirin in Japan, Canada and USA.
    Journal of Medicinal Chemistry 01/2014; 57(5). DOI:10.1021/jm401507s · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C Virus (HCV) non-structural protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activites, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared to the full length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared to the wildtype protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulates the protease and helicase activities in vivo.
    Protein Science 10/2013; 22(12). DOI:10.1002/pro.2378 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Future treatments for individuals infected by the hepatitis C virus (HCV) will likely involve combinations of compounds that inhibit multiple viral targets. The helicase of HCV is an attractive target with no known drug candidates in clinical trials. Herein we describe an integrated strategy for identifying fragment inhibitors using structural and biophysical techniques. Based on an X-ray structure of apo HCV helicase and in silico and bioinformatic analyses of HCV variants, we identified that one site in particular (labeled 3 + 4) was the most conserved and attractive pocket to target for a drug discovery campaign. Compounds from multiple sources were screened to identify inhibitors or binders to this site, and enzymatic and biophysical assays (NMR and SPR) were used to triage the most promising ligands for 3D structure determination by X-ray crystallography. Medicinal chemistry and biophysical evaluations focused on exploring the most promising lead series. The strategies employed here can have general utility in drug discovery.
    Journal of Medicinal Chemistry 01/2014; 57(5). DOI:10.1021/jm401432c · 5.48 Impact Factor