Article

A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus

Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS Genetics (Impact Factor: 8.17). 02/2009; 5(1):e1000326. DOI: 10.1371/journal.pgen.1000326
Source: PubMed

ABSTRACT The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F(2) individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in cyanogenesis (hydrogen cyanide release following tissue damage) was first noted in populations of white clover more than a century ago, and subsequent decades of research have established this system as a classic example of an adaptive chemical defence polymorphism. Here, we document polymorphisms for cyanogenic components in several relatives of white clover, and we determine the molecular basis of this trans-specific adaptive variation. One hundred and thirty-nine plants, representing 13 of the 14 species within Trifolium section Trifoliastrum, plus additional species across the genus, were assayed for cyanogenic components (cyanogenic glucosides and their hydrolysing enzyme, linamarase) and for the presence of underlying cyanogenesis genes (CYP79D15 and Li, respectively). One or both cyanogenic components were detected in seven species, all within section Trifoliastrum; polymorphisms for the presence/absence (PA) of components were detected in six species. In a pattern that parallels our previous findings for white clover, all observed biochemical polymorphisms correspond to gene PA polymorphisms at CYP79D15 and Li. Relationships of DNA sequence haplotypes at the cyanogenesis loci and flanking genomic regions suggest independent evolution of gene deletions within species. This study thus provides evidence for the parallel evolution of adaptive biochemical polymorphisms through recurrent gene deletions in multiple species.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying the genetic basis of parallel phenotypic evolution provides insight into the process of adaptation and evolutionary constraint. White clover (Trifolium repens) has evolved climate-associated adaptive clines in cyanogenesis (the ability to produce hydrogen cyanide upon tissue damage) in several world regions where it has been introduced. Gene-deletion polymorphisms at the CYP79D15 and Li loci underlie the presence/absence of the cyanogenic phenotype. Both loci have undergone multiple independent gene-deletion events, which are identifiable through molecular signatures in flanking regions. To investigate whether cyanogenesis clines in introduced populations have evolved through the sorting of standing genetic variation or de novo gene deletions, we examined cyanogenesis gene-flanking regions in three world regions. In comparison with native Eurasian populations, we find no evidence for novel gene deletion events in any introduced region, which suggests that these adaptive clines have evolved through the geographical sorting of pre-existing genetic variation.
    Journal of Evolutionary Biology 08/2014; 27(11). DOI:10.1111/jeb.12466
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Population genetic theory predicts that effective population size and gene flow can strongly influence the levels and patterns of genetic variability, and thereby also the likelihood, pace and direction of evolutionary transformations. Given that levels and patterns of genetic variability in lakes and ponds often differ from those observed in continuous marine environments, it follows that the dynamics of adaptation and evolution in freshwater habitats are also likely to differ from those in marine habitats. Here, I explore and discuss some ideas relating to the likelihood of parallel phenotypic evolution through similar (parallel) vs different (convergent) genetic changes with particular focus on freshwater isolates. I will review and discuss the available genetic data with particular focus on freshwater fish populations, and outline possible avenues for future work in which ponds and small lakes could serve as useful model systems to study genetic parallelism and convergence, as well as molecular adaptation in general. Conservation issues related to genetics of isolated pond and lake populations are also addressed.
    Journal of limnology 05/2014; 73(s1):33-45. DOI:10.4081/jlimnol.2014.805

Preview (2 Sources)

Download
6 Downloads
Available from