Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival.

Molecular Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Nature (Impact Factor: 38.6). 01/2009; 458(7234):92-6. DOI: 10.1038/nature07613
Source: PubMed

ABSTRACT The transcription factor NF-kappaB is required for lymphocyte activation and proliferation as well as the survival of certain lymphoma types. Antigen receptor stimulation assembles an NF-kappaB activating platform containing the scaffold protein CARMA1 (also called CARD11), the adaptor BCL10 and the paracaspase MALT1 (the CBM complex), linked to the inhibitor of NF-kappaB kinase complex, but signal transduction is not fully understood. We conducted parallel screens involving a mass spectrometry analysis of CARMA1 binding partners and an RNA interference screen for growth inhibition of the CBM-dependent 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Here we report that both screens identified casein kinase 1alpha (CK1alpha) as a bifunctional regulator of NF-kappaB. CK1alpha dynamically associates with the CBM complex on T-cell-receptor (TCR) engagement to participate in cytokine production and lymphocyte proliferation. However, CK1alpha kinase activity has a contrasting role by subsequently promoting the phosphorylation and inactivation of CARMA1. CK1alpha has thus a dual 'gating' function which first promotes and then terminates receptor-induced NF-kappaB. ABC DLBCL cells required CK1alpha for constitutive NF-kappaB activity, indicating that CK1alpha functions as a conditionally essential malignancy gene-a member of a new class of potential cancer therapeutic targets.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigen receptor-mediated nuclear factor κB (NF-κB) activation relies on the formation of a large multi-protein complex that contains CARMA1, BCL10 and MALT1 (CBM complex). This signalosome is pirated in the activated B-cell like subgroup of diffuse large B cell lymphoma (ABC DLBCL) to drive aberrant NF-κB activation, thereby promoting cell survival and propagation. Using an unbiased proteomic approach, we screened for additional components of the CBM in lymphocytes. We found that the linear ubiquitin chain assembly complex (LUBAC), which was previously linked to cytokine-mediated NF-κB activation, dynamically integrates the CBM and marshals NF-κB optimal activation following antigen receptor ligation independently of its catalytic activity. The LUBAC also participates to preassembled CBM complex in cells derived from ABC DLBCL. Silencing the LUBAC reduced NF-κB activation and was toxic in ABC DLBCL cell lines. Thus, our findings reveal a role for the LUBAC during lymphocyte activation and in B cell malignancy.
    Blood 02/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML.
    Journal of Experimental Medicine 03/2014; · 13.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to discover the variation of microRNAs and genes associated with NF-κB signaling pathway between the healthy and the mastitis Chinese Holstein cows, Illumina Deep Sequencing and qRT-PCR are applied to detect 25 kinds of miRNAs (miR-16, miR-125b, miR-15, miR-29a, miR-23b, miR-146, miR-301a, miR-181b, let-7, miR-30b, miR-21, miR-223, miR-27b, miR-10a, miR-143, etc.) expression levels in blood samples and 14 genes (RelA, RelB, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBε, IκBζ, Bcl-3, IKKα, IKKβ, IKKγ/NEMO) relative expression levels in nine tissues. The total number of miRNAs is declining, and RelA, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBζ, Bcl-3, and IKKα expressions are rising in mastitis individuals. So, we suppose that NF-κB pathway is active in mastitis individuals as a result of the decrease inhibition of miRNAs. While in healthy ones, the NF-κB pathway is inactive, because of the miRNAs enhanced inhibition action. However, the specific regulatory mechanism of miRNAs on NF-κB pathway in mastitis Holstein cows needs further investigation. Moreover, due to obvious expression differences, some miRNAs, especially miR-16 and miR-223, may be used as new markers for the dairy mastitis prognosing.
    Gene 05/2014; · 2.20 Impact Factor


Available from