Article

Dentinal Tubules Sealing by Means of Diode Lasers (810 and 980 nm): A Preliminary In Vitro Study.

1 Department of Dental Sciences, Faculty of Medicine, University of Liège , Quai Godfroid Kurth, Liège, Belgium .
Photomedicine and laser surgery (Impact Factor: 1.76). 06/2013; DOI: 10.1089/pho.2012.3443
Source: PubMed

ABSTRACT Abstract Objective: The aim of this study was to evaluate the effect on dentinal surfaces of diode lasers (810 and 980 nm) at different parameters. Materials and methods: Twenty-four caries-free human impacted wisdom teeth were used. The crowns were sectioned transversely in order to expose the dentin. The smear layer was removed by a 1 min application of ethylenediaminetetraacetic acid (EDTA). Each surface was divided into four quadrants irradiated at a different output power setting for each kind of laser: 0.8, 1, 1.6, and 2 W (energy densities: 2547, 3184, 5092, and 6366 J/cm(2), irradiation speed 1 mm/sec; optical fiber diameter: 200 μm; continuous and noncontact mode). Half of the samples were stained with a graphite paste. All specimens were sent for scanning electron microscopic (SEM) analysis. Pulp temperature increases in additional 20 teeth were measured by a thermocouple. Results: Diode laser irradiations at 0.8 and 1 W led to occlusion or narrowing of dentin tubules without provoking fissures or cracks. The application of graphite paste increased the thermal effects in dentin. Measurements of pulp temperature showed that irradiations at 0.8 and 1 W for a period of 10 sec in continuous mode increased pulp temperature (T ≤2°C). Conclusions: Diode lasers (810 and 980 nm) used at 0.8 and 1 W for 10 sec in continuous mode were able to seal the dentin tubules. These parameters can be considered harmless for pulp vitality, and may be effective in the treatment of dentinal hypersensitivity.

0 Bookmarks
 · 
186 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The aim of this study is to evaluate the effectiveness of Nd:YAP laser to seal dentinal tubules at different parameters. Material and Methods. 24 caries-free human wisdom impacted molars were used. The crowns were sectioned transversally in order to totally expose the dentin. The smear layer was removed by a 1 min application of EDTA. Each surface was divided into four quadrants, but only three quadrants were irradiated at a different output power setting (irradiation speed: 1 mm/sec; optical fiber diameter: 320 µm; tangential incidence of beam and in noncontact mode). Samples were smeared with a graphite paste prior to laser irradiation. All specimens were sent for SEM analysis. Pulp temperature increases in additional twenty teeth were measured by a thermocouple. Results. Morphological changes in dentin surfaces depend on the value of used energy density. Higher energy densities (2 W-4 W; 200-400 mJ; pulse duration: 100 m sec.; and 10 Hz) induce higher dentin modifications. Our results confirmed that Nd:YAP laser irradiations can lead to total or partial occlusion of dentin tubules without provoking fissures or cracks. Measurements of pulp temperature increases showed that Nd:YAP laser beam can be considered as harmless for pulp vitality for following irradiation conditions: 2 W (200 mJ) to 4 W (400 mJ) with an irradiation speed of 1 mm/sec; fiber diameter: 320 micrometers; 10 Hz; pulse duration: 100 m sec; noncontact mode and in tangential incidence to exposed dentin. The perpendicular incidence of the laser beam on exposed dentin may injure pulp vitality even at low output power of 3 W. Conclusions. Nd:YAP laser beam was able to seal the dentin tubules without damaging dentinal surfaces and without harming pulp vitality. Nd:YAP laser is effective and may be safely used for future in vivo treatments of dentinal hypersensitivity under certain conditions.
    TheScientificWorldJournal. 01/2014; 2014:323604.

Full-text

Download
109 Downloads
Available from
Jun 4, 2014