Article

Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse.

Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Minatojima-Minami, Chuou-ku, Kobe, Japan.
genesis (Impact Factor: 2.58). 01/2009; 46(2):spcone. DOI: 10.1002/dvg.20489
Source: PubMed

ABSTRACT The secreted frizzled-related protein gene family encodes proteins that regulate Wnt signaling. Msx1 in situ hybridization of 9.5 days post coitus mouse embryos showing normal neural tube development in an Sfrp1; Sfrp2 double mutant (left) but severe neural tube defects in a Looptail (Lp/+); Sfrp1; Sfrp2 triple mutant (right). These findings suggest that Sfrps regulate the Wnt planar cell polarity pathway. See Satoh et al. in this issue.

1 Bookmark
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Cell-cell interactions are vital for embryonic organ development and normal function of differentiated cells and tissues. In this study we have developed a self-assembled monolayer-based co-culture system to study tooth morphogenesis. Specifically, we designed a 2-D microenvironment present in the dental tissue by creating a well-structured, laterally organized epithelial and mesenchymal cell co-culture system by patterning the cell-attachment substrate. Chemical modifications were used to develop tunable surface patterns to facilitate epithelial-mesenchymal interactions mimicking the developing tooth. Such a design promoted interactions between monolayer's of the 2 cell types and provided signaling cues that resulted in cellular differentiation and mineralized matrix formation. Gene expression analysis showed that these co-cultures mimicked in-vivo conditions than monolayer cultures of a single cell type.
    Connective tissue research 01/2014; 55(1):26-33. · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutations in hedgehog acyltransferase (Hhat) and patched1 (Ptch1) exhibited perturbations in the SHH gradient during frontonasal development, which led to hypoplastic nasal process outgrowth, epithelial seam persistence, and cleft lip. Further investigation revealed that enhanced SHH signaling restricts canonical WNT signaling in the lambdoidal region by promoting expression of genes encoding WNT inhibitors. Moreover, reduction of canonical WNT signaling perturbed p63/interferon regulatory factor 6 (p63/IRF6) signaling, resulting in increased proliferation and decreased cell death, which was followed by persistence of the epithelial seam and cleft lip. Consistent with our results, mutations in genes that disrupt SHH and WNT signaling have been identified in both mice and humans with cleft lip. Collectively, our data illustrate that altered SHH signaling contributes to the etiology and pathogenesis of cleft lip through antagonistic interactions with other gene regulatory networks, including the canonical WNT and p63/IRF6 signaling pathways.
    The Journal of clinical investigation 03/2014; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) are a rare population of somatic stem cells that have the ability to regenerate the entire mature blood system in a hierarchical way for the duration of an adult life. Adult HSCs reside in the bone marrow niche. Different niche cell types and molecules regulate the balance of HSC dormancy and activation as well as HSC behavior in both normal and malignant hematopoiesis. Here, we describe the interplay of HSCs and their niche, in particular the involvement of the Wnt signaling pathway. Although the prevailing notion has been that malignant transformation of HSCs is the main cause of leukemia, evidence is mounting that disruption of niche regulation by transformed hematopoietic cells, which may overexpress Wnt signaling or intrinsic stromal defects in gene expression, is at least a collaborative factor in leukemogenesis. Thus, insights into the normal and altered functions of niche components will help to obtain a better understanding of normal and malignant hematopoiesis and how environmental factors affect these processes.
    Annals of the New York Academy of Sciences 02/2014; · 4.38 Impact Factor

Full-text

View
0 Downloads
Available from