Article

Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis.

College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
Arthritis & Rheumatology (Impact Factor: 7.87). 01/2009; 60(1):189-98. DOI: 10.1002/art.24182
Source: PubMed

ABSTRACT To determine the effect of quadriceps strength in individuals with knee osteoarthritis (OA) on loss of cartilage at the tibiofemoral and patellofemoral joints (assessed by magnetic resonance imaging [MRI]) and on knee pain and function.
We studied 265 subjects (154 men and 111 women, mean+/-SD age 67+/-9 years) who met the American College of Rheumatology criteria for symptomatic knee OA and who were participating in a prospective, 30-month natural history study of knee OA. Quadriceps strength was measured at baseline, isokinetically, during concentric knee extension. MRI of the knee at baseline and at 15 and 30 months was used to assess cartilage loss at the tibiofemoral and patellofemoral joints, with medial and lateral compartments assessed separately. At baseline and at followup visits, knee pain was assessed using a visual analog scale, and physical function was assessed using the Western Ontario and McMaster Universities Osteoarthritis Index.
There was no association between quadriceps strength and cartilage loss at the tibiofemoral joint. Results were similar in malaligned knees. However, greater quadriceps strength was protective against cartilage loss at the lateral compartment of the patellofemoral joint (for highest versus lowest tertile of strength, odds ratio 0.4 [95% confidence interval 0.2, 0.9]). Those with greater quadriceps strength had less knee pain and better physical function over followup (P<0.001).
Greater quadriceps strength had no influence on cartilage loss at the tibiofemoral joint, including in malaligned knees. We report for the first time that greater quadriceps strength protected against cartilage loss at the lateral compartment of the patellofemoral joint, a finding that requires confirmation. Subjects with greater quadriceps strength also had less knee pain and better physical function over followup.

0 Bookmarks
 · 
167 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To examine degenerative changes in all cartilage surfaces of the knee following arthroscopic partial medial meniscectomy. For this prospective cohort study, 14 patients (five female) with a mean age of 47.9 ± 12.9 years who had undergone isolated arthroscopic partial medial meniscectomy were evaluated. Cartilage-sensitive magnetic resonance imaging (MRI) scans were acquired from the operated knees before the index operations, as well as at 6, 12, and 24 months after surgery. The MRI scans were assessed for the prevalence, severity, and size of cartilage degenerations. The clinical outcome was assessed using the SF-36 physical and mental component score and the International Knee Documentation Committee Knee Evaluation Form and was correlated with radiological findings. There was a significant increase in the severity of cartilage lesions in the medial tibial plateau (P = 0.019), as well as a trend towards an increase in the lateral tibial plateau. The size of the cartilage lesions increased significantly in the medial femoral condyle (P = 0.005) and lateral femoral condyle (P = 0.029), as well as in the patella (P = 0.019). Functional outcome scores improved significantly throughout the follow-up period. There was no correlation between cartilage wear and functional outcome. Arthroscopic partial medial meniscectomy is associated with adverse effects on articular cartilage and may lead to an increase in the severity and size of cartilage lesions. Post-operative cartilage wear predominantly affected the medial compartment and also affected the other compartments of the knee. Strategies to reduce subsequent osteoarthritic changes need to involve all compartments of the knee. LEVEL OF EVIDENCE: IV.
    Knee Surgery Sports Traumatology Arthroscopy 02/2015; DOI:10.1007/s00167-015-3542-7 · 2.84 Impact Factor
  • Source
    African Journal for Physical Health Education, Recreation and Dance 01/2011; 17(2):328-339. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionMarked weakness of the quadriceps muscles is typically observed following injury, surgery or pathology affecting the knee joint. This is partly due to ongoing neural inhibition that prevents the central nervous system from fully activating the quadriceps, a process known as arthrogenic muscle inhibition (AMI). This study aimed to further investigate the mechanisms underlying AMI by exploring the effects of experimental knee joint effusion on quadriceps corticomotor and intracortical excitability.Methods Seventeen healthy volunteers participated in this study. Transcranial magnetic stimulation was used to measure quadriceps motor evoked potential area, short-interval intracortical inhibition, intracortical facilitation and cortical silent period duration before and after experimental knee joint effusion. Joint effusion was induced by the intraarticular infusion of dextrose saline into the knee.ResultsThere was a significant increase in quadriceps motor evoked potential area following joint infusion, both at rest (P¿=¿0.01) and during voluntary muscle contraction (P¿=¿0.02). Cortical silent period duration was significantly reduced following joint infusion (P¿=¿0.02). There were no changes in short interval intracortical inhibition or intracortical facilitation over time (all P¿>¿0.05).Conclusions The results of this study provide no evidence for a supraspinal contribution to quadriceps AMI. Paradoxically, but consistent with previous observations in patients with chronic knee joint pathology, quadriceps corticomotor excitability increased after experimental knee joint effusion. The increase in quadriceps corticomotor excitability may be at least partly mediated by a decrease in gamma-aminobutyric acid (GABA)-ergic inhibition within the motor cortex.
    Arthritis Research & Therapy 12/2014; 16(6):502. DOI:10.1186/s13075-014-0502-4 · 4.12 Impact Factor

Full-text (2 Sources)

Download
15 Downloads
Available from
Jun 10, 2014