Article

Phenotypic and genotypic analyses of clinical Fusobacterium nucleatum and Fusobacterium periodonticum isolates from the human gut.

Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
Anaerobe (Impact Factor: 2.02). 01/2009; 14(6):301-9. DOI: 10.1016/j.anaerobe.2008.12.003
Source: PubMed

ABSTRACT Fusobacterium nucleatum is a Gram-negative anaerobic rod that is part of the normal human microflora, and has also been associated with various infections. Bacterial strains belonging to the species are typically heterogeneous in both phenotype and genotype, which can hinder their identification in a clinical setting. The majority of F. nucleatum isolates originate from oral sites, however the species is also a resident of the human gastrointestinal tract. The aim of this study was to compare F. nucleatum isolates from human intestinal biopsy samples to try and determine whether isolates from this site are divergent from oral isolates. We used a variety of phenotypic and genotypic markers to compare 21 F. nucleatum and Fusobacterium periodonticum isolates from the GI tract to oral isolates and recognized type strains in order to study heterogeneity within this set. 16S rDNA and rpoB gene sequence analysis allowed us to build phylogenetic trees that consistently placed isolates into distinct clusters. 16S rDNA copy number analyses using Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated potential for use as a method to examine clonality amongst species. Phenotypic analyses gave variable results that were generally unhelpful in distinguishing between phylogenetic clusters. Our results suggest that a) F. periodonticum isolates are not restricted to the oral niche; b) phenotypic classification is not sufficient to subspeciate isolates; c) heterogeneity within the species is extensive but constrained; and d) F. nucleatum isolates from the gut tend to identify with the animalis subspecies.

0 Bookmarks
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gut microbiota plays an essential role in regulating intestinal homeostasis through its capacity to modulate various biological activities ranging from barrier, immunity and metabolic function. Not surprisingly, microbial dysbiosis is associated with numerous intestinal disorders including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). In this piece, we will review recent evidence that gut microbial dysbiosis can influence intestinal disease, including colitis and CRC. We will discuss the biological events implicated in the development of microbial dysbiosis and the emergence of CRC-associated microorganisms, focusing on E.coli and F. nucleatum. Finally, the mechanisms by which E.coli and F. nucleatum exert potentially carcinogenic effects on the host will be reviewed.
    Immunology letters. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. Results We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. Conclusions A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue.
    Microbiome. 01/2013; 1(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaerobic bacteria can cause a wide variety of infections, and some of these infections can be serious. Conventional identification methods based on biochemical tests are often lengthy and can produce inconclusive results. An oligonucleotide array based on the 16S-23S rRNA intergenic spacer (ITS) sequences was developed to identify 28 species of anaerobic bacteria and Veillonella. The method consisted of PCR amplification of the ITS regions with universal primers, followed by hybridization of the digoxigenin-labeled PCR products to a panel of 35 oligonucleotide probes (17- to 30-mers) immobilized on a nylon membrane. The performance of the array was determined by testing 310 target strains (strains which we aimed to identify), including 122 reference strains and 188 clinical isolates. In addition, 98 nontarget strains were used for specificity testing. The sensitivity and the specificity of the array for the identification of pure cultures were 99.7 and 97.1%, respectively. The array was further assessed for its ability to detect anaerobic bacteria in 49 clinical specimens. Two species (Finegoldia magna and Bacteroides vulgatus) were detected in two specimens by the array, and the results were in accordance with those obtained by culture. The whole procedure of array hybridization took about 8 h, starting with the isolated colonies. The array can be used as an accurate alternative to conventional methods for the identification of clinically important anaerobes.
    Journal of clinical microbiology 04/2010; 48(4):1283-90. · 4.16 Impact Factor