Accurate simulation of optical properties in dyes.

Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, B-5000 Namur, Belgium.
Accounts of Chemical Research (Impact Factor: 20.83). 01/2009; 42(2):326-34. DOI: 10.1021/ar800163d
Source: PubMed

ABSTRACT Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In general, optical emission in the solid-state is red-shifted with respect to the solution phase. A series of recently synthesized compounds exhibits aggregation induced blue-shifted emission (AIBSE) phenomena. By employing a polarizable continuum model (PCM) and a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, we investigate the excited-state electronic structures of some typical AIE-active molecules both in solvents and in aggregates at the time-dependent density functional theory (TD-DFT) level. It is found that the AIBSE phenomena originate from the smaller reorganization energy in aggregates than in the solution phase, as evidenced through the restricted structural relaxation, planarization in the excited state, and freezing of low-frequency out-of-plane twists in the transition state.
    Physical Chemistry Chemical Physics 02/2014; · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the current contribution, we present a critical study of the theoretical protocol used for the determination of the electronic spectra properties of luminescent cyclometalated iridium(III) complex, [Ir(III)(ppy)2H2dcbpy](+) (where, ppy = 2-phenylpyridine, H2dcbpy = 2,2'-bipyridine-4,4'-dicarboxylic acid), considered as a representative example of the various problems related to the prediction of electronic spectra of transition metal complex. The choice of the exchange-correlation functional is crucial for the validity of the conclusions that would be drawn from the numerical results. The influence of the exchange-correlation on geometry parameter and absorption/emission band, the role of solvent effects on time-dependent density function theory (TD-DFT) calculations, as well as the importance of the chosen proper procedure to optimize triplet excited geometry, have been thus examined in detail. From the obtained results, some general conclusions and guidelines are presented: i) PBE0 functional is the most accurate in prediction of ground state geometry; ii) the well-established B3LYP, B3P86, PBE0, and X3LYP have similar accuracy in calculation of absorption spectrum; and iii) the hybrid approach TD-DFT//CIS gives out excellent agreement in the evaluation of triplet excitation energy.
    Journal of Molecular Modeling 03/2014; 20(3):2108. · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vertical excitation energies of 3,4-dicyano-6-methoxy and 3,4-dicyano-6,7-dimethoxy carbostyril have been computed with different approximations for the time-dependent density functional theory (TD-DFT) procedure and with different implementations of the continuum solvation model COSMO. Different DFT functionals were tested in TD-DFT and Tamm-Dancoff approximations (TDA) for the excitation energies in the gas phase. TDA-B3LYP showed the best agreement with the experimental data. Then TDA-B3LYP computations were performed combined with the COSMO model of solvation comparing a linear response (LR) and a post-configuration interaction (CI) implementation of the fast solvent reorganization. The post-CI solvent model overestimates the π→π* transitions and strongly underestimates the n→π* transition. The TDA approximation in combination with the linear response implementation of the COSMO solvation model perfectly computes the experimental results. TDA-LR is the most reliable method for the computation of the vertical excitation energies in a solvent. Comparison with explicit solvent calculations shows there is only a minor effect on the energies of the electronic interaction of the solute with the solvent.
    Journal of Molecular Modeling 05/2014; 20(5):2217. · 1.98 Impact Factor