Article

Fractional quantum Hall state in coupled cavities.

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.
Physical Review Letters (Impact Factor: 7.73). 01/2009; 101(24):246809. DOI: 10.1103/PhysRevLett.101.246809
Source: PubMed

ABSTRACT We propose a scheme to realize the fractional quantum Hall system with atoms confined in a two-dimensional array of coupled cavities. Our scheme is based on simple optical manipulation of atomic internal states and intercavity hopping of virtually excited photons. It is shown that, as well as the fractional quantum Hall system, any system of hard-core bosons on a lattice in the presence of an arbitrary Abelian vector potential can be simulated solely by controlling the phases of constantly applied lasers. The scheme, for the first time, exploits the core advantage of coupled cavity simulations, namely, the individual addressability of the components, and also brings the gauge potential into such simulations as well as the simple optical creation of particles.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically non-equilibrium nature. We present a rich variety of photon hydrodynamical effects that have been recently observed, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While our review is mostly focused on a class of semiconductor systems that have been extensively studied in recent years (namely planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of our article is devoted to a review of the exciting perspectives to achieve strongly correlated photon gases. In particular, we present different mechanisms to obtain efficient photon blockade, we discuss the novel quantum phases that are expected to appear in arrays of strongly nonlinear cavities, and we point out the rich phenomenology offered by the implementation of artificial gauge fields for photons.
    Review of Modern Physics 05/2012; 85(1). · 44.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a scheme to generate an N -qubit cluster state by adiabatic passage in coupled cavities. The required interaction time keeps unchanged with the increasing of the number of qubits and need not be accurately controlled. In addition, the scheme is robust against the fluctuations of some experimental parameters.
    Applied Physics Letters 03/2010; · 3.52 Impact Factor
  • Source
    Physics. 01/2010;

Full-text (2 Sources)

View
24 Downloads
Available from
May 23, 2014