Article

Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir

01/2009;
Source: arXiv

ABSTRACT We consider the quantum mechanical generalization of Crooks Fluctuation Theorem and Jarzynski Equality for an open quantum system. The explicit expression for microscopic work for an arbitrary prescribed protocol is obtained, and the relation between quantum Crooks Fluctuation Theorem, quantum Jarzynski Equality and their classical counterparts are clarified. Numerical simulations based on a two-level toy model are used to demonstrate the validity of the quantum version of the two theorems beyond linear response theory regime.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
    Physical Review E 05/2009; 79(4 Pt 1):041129. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.
    Physical Review E 09/2013; 88(3-1):032146. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on trajectory dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these results for three different cases: (i) the system is evolving in isolation from its surroundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in contact with reservoir using quantum Crooks fluctuation theorem. In case (iii), we build on the treatment carried out in [H. T. Quan and H. Dong, arxiv/cond-mat: 0812.4955], where a quantum trajectory has been defined as a sequence of alternating work and heat steps. The obtained entropy production fluctuation theorems retain the same form as in the classical case. The inequality of second law of thermodynamics gets modified in the presence of information. These fluctuation theorems are robust against intermediate measurements of any observable performed with respect to von Neumann projective measurements as well as weak or positive operator valued measurements.
    Pramana 02/2012; 80(2). · 0.56 Impact Factor

Full-text

View
6 Downloads
Available from