Neuronal-Specific Overexpression of a Mutant Valosin-Containing Protein Associated with IBMPFD Promotes Aberrant Ubiquitin and TDP-43 Accumulation and Cognitive Dysfunction in Transgenic Mice

School of Natural Sciences, University of California, Merced, California.
American Journal Of Pathology (Impact Factor: 4.59). 06/2013; 183(2):504. DOI: 10.1016/j.ajpath.2013.04.014
Source: PubMed


Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition.

Download full-text


Available from: Carlos J Rodriguez-Ortiz, Sep 11, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.
    Journal of Alzheimer's disease: JAD 02/2014; 40(3). DOI:10.3233/JAD-131910 · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
    Frontiers in Cellular Neuroscience 05/2014; 8:147. DOI:10.3389/fncel.2014.00147 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic insights into the pathophysiology of amyotrophic lateral sclerosis (ALS) are untangling the clinical heterogeneity that may contribute to poor clinical trial outcomes and thus to a lack of effective treatments. Mutations in a large number of genes, including SOD1, C9ORF72, TARDBP, FUS, VAPB, VCP, UBQLN2, ALS2, SETX, OPTN, ANG, and SPG11, are thought to cause ALS, whereas others, including ATAXN2, GRN, HFE, NEFH, UNC13A, and VEGF, appear to be disease-modifying genes. Epigenetic influences may also play important roles. An improved understanding of ALS genetics should lead to better trial designs, insights into common molecular pathways, and better characterization of preclinical models. New genetic sequencing techniques, which use high-throughput methods to assess variants across the genome or exome, may facilitate rational patient stratification for clinical trials and permit more individualized prognostic information and treatment decisions in clinical care. © 2014 Wiley Periodicals, Inc.
    Muscle & Nerve 06/2014; 49(6-6). DOI:10.1002/mus.24198 · 2.28 Impact Factor
Show more