Article

Neuronal-Specific Overexpression of a Mutant Valosin-Containing Protein Associated with IBMPFD Promotes Aberrant Ubiquitin and TDP-43 Accumulation and Cognitive Dysfunction in Transgenic Mice.

School of Natural Sciences, University of California, Merced, California.
American Journal Of Pathology (Impact Factor: 4.6). 06/2013; 183(2):504. DOI: 10.1016/j.ajpath.2013.04.014
Source: PubMed

ABSTRACT Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress granules (SGs) are mRNA-protein aggregates induced during stress, which accumulate in many neurodegenerative diseases. Previously, the autophagy-lysosome pathway and valosin-containing protein (VCP), key players of the protein quality control (PQC), were shown to regulate SG degradation. This is consistent with the idea that PQC may survey and/or assist SG dynamics. However, despite these observations, it is currently unknown whether the PQC actively participates in SG assembly. Here, we describe that inhibition of autophagy, lysosomes and VCP causes defective SG formation after induction. Silencing the VCP co-factors UFD1L and PLAA, which degrade defective ribosomal products (DRIPs) and 60S ribosomes, also impaired SG assembly. Intriguingly, DRIPs and 60S, which are released from disassembling polysomes and are normally excluded from SGs, were significantly retained within SGs in cells with impaired autophagy, lysosome or VCP function. Our results suggest that deregulated autophagy, lysosomal or VCP activities, which occur in several neurodegenerative (VCP-associated) diseases, may alter SG morphology and composition.Cell Death and Differentiation advance online publication, 18 July 2014; doi:10.1038/cdd.2014.103.
    Cell Death and Differentiation 07/2014; DOI:10.1038/cdd.2014.103 · 8.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.
    Journal of Alzheimer's disease: JAD 02/2014; 40(3). DOI:10.3233/JAD-131910 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
    Frontiers in Cellular Neuroscience 05/2014; 8:147. DOI:10.3389/fncel.2014.00147 · 4.18 Impact Factor

Full-text

Download
8 Downloads
Available from
Sep 11, 2014