Article

Aerosol transmission is an important mode of influenza A virus spread.

School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
Nature Communications (Impact Factor: 10.74). 06/2013; 4:1935. DOI: 10.1038/ncomms2922
Source: PubMed

ABSTRACT Influenza A viruses are believed to spread between humans through contact, large respiratory droplets and small particle droplet nuclei (aerosols), but the relative importance of each of these modes of transmission is unclear. Volunteer studies suggest that infections via aerosol transmission may have a higher risk of febrile illness. Here we apply a mathematical model to data from randomized controlled trials of hand hygiene and surgical face masks in Hong Kong and Bangkok households. In these particular environments, inferences on the relative importance of modes of transmission are facilitated by information on the timing of secondary infections and apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We find that aerosol transmission accounts for approximately half of all transmission events. This implies that measures to reduce transmission by contact or large droplets may not be sufficient to control influenza A virus transmission in households.

Download full-text

Full-text

Available from: Piyarat Suntarattiwong, Feb 04, 2014
0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aerosols are investigated because of their significant impact on the environment and human health. To date, windblown dust and sea salt from sea spray through bursting bubbles have been considered the chief mechanisms of environmental aerosol dispersion. Here we investigate aerosol generation from droplets hitting wettable porous surfaces including various classifications of soil. We demonstrate that droplets can release aerosols when they influence porous surfaces, and these aerosols can deliver elements of the porous medium to the environment. Experiments on various porous media including soil and engineering materials reveal that knowledge of the surface properties and impact conditions can be used to predict when frenzied aerosol generation will occur. This study highlights new phenomena associated with droplets on porous media that could have implications for the investigation of aerosol generation in the environment.
    Nature Communications 01/2015; 6(6083). DOI:10.1038/ncomms7083 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with influenza release aerosol particles containing the virus into their environment. However, the importance of airborne transmission in the spread of influenza is unclear, in part because of a lack of information about the infectivity of the airborne virus. The purpose of this study was to determine the amount of viable influenza A virus that was expelled by patients in aerosol particles while coughing. Sixty-four symptomatic adult volunteer outpatients were asked to cough 6 times into a cough aerosol collection system. Seventeen of these participants tested positive for influenza A virus by viral plaque assay (VPA) with confirmation by viral replication assay (VRA). Viable influenza A virus was detected in the cough aerosol particles from 7 of these 17 test subjects (41%). Viable influenza A virus was found in the smallest particle size fraction (0.3 µm to 8 µm), with a mean of 142 plaque-forming units (SD 215) expelled during the 6 coughs in particles of this size. These results suggest that a significant proportion of patients with influenza A release small airborne particles containing viable virus into the environment. Although the amounts of influenza A detected in cough aerosol particles during our experiments were relatively low, larger quantities could be expelled by influenza patients during a pandemic when illnesses would be more severe. Our findings support the idea that airborne infectious particles could play an important role in the spread of influenza.
    Journal of Occupational and Environmental Hygiene 09/2014; Accepted. DOI:10.1080/15459624.2014.973113 · 1.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Influenza virus is responsible for annual deaths due to seasonal epidemics and is the cause of major pandemics which have claimed millions of human lives over the last century. Knowledge about respiratory virus transmission is advancing. Spread is likely through the air, but much work remains to be done to characterize the aerosols produced by infected individuals, including viral particle survival and infectivity. Although coughs have been characterized, little work has been done to examine coughs from infected individuals. The WeCoF project aims at providing evidence to support prevention measures to mitigate person-to-person influenza transmission in critical locations, such as hospitals, and during pandemics. Findings: A novel experimental cough chamber facility - the FLUGIE - has been developed to study the far-field aerodynamics and aerosol transport of droplets produced by the coughs from humans naturally-infected with influenza. The flow field of each cough is measured using Particle Image Velocimetry (PIV). A preliminary study involving 12 healthy individuals has been carried out in order to quantify the strengths of their coughs at a distance of 1 m from the mouth. The spatially averaged maximum velocity was determined and the average value was 0.41 m/s across 27 coughs of good data quality. The peak value of velocity was also extracted and compared with the average velocity. Conclusions: Preliminary results show that there is significant air motion associated with a cough (on the order of 0.5 m/s) as far away as 1 m from the mouth of the healthy person who coughs. The results from this pilot study provide the framework for a more extensive participant recruitment campaign that will encompass a statistically-significant cohort.
    BMC Research Notes 08/2014; 7(1):563. DOI:10.1186/1756-0500-7-563