Article

Aerosol transmission is an important mode of influenza A virus spread.

School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
Nature Communications (Impact Factor: 10.74). 06/2013; 4:1935. DOI: 10.1038/ncomms2922
Source: PubMed

ABSTRACT Influenza A viruses are believed to spread between humans through contact, large respiratory droplets and small particle droplet nuclei (aerosols), but the relative importance of each of these modes of transmission is unclear. Volunteer studies suggest that infections via aerosol transmission may have a higher risk of febrile illness. Here we apply a mathematical model to data from randomized controlled trials of hand hygiene and surgical face masks in Hong Kong and Bangkok households. In these particular environments, inferences on the relative importance of modes of transmission are facilitated by information on the timing of secondary infections and apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We find that aerosol transmission accounts for approximately half of all transmission events. This implies that measures to reduce transmission by contact or large droplets may not be sufficient to control influenza A virus transmission in households.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted.
    Influenza and Other Respiratory Viruses 11/2014; · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The CoPanFlu-France household cohort was set up in 2009 to identify risk factors of infection by the pandemic A/H1N1 (H1N1pdm09) virus in the general population.Objectives To investigate the determinants of infection during the 2010–2011 season, the first complete influenza season of study follow-up for this cohort.Patients/Methods Pre- and post-epidemic blood samples were collected for all subjects, and nasal swabs were obtained in all subjects from households where an influenza-like illness was reported. Cases were defined as either a fourfold increase in the serological titer or a laboratory-confirmed H1N1pdm09 on a nasal swab, with either RT-PCR or multiplex PCR. Risk factors for H1N1pdm09 infections were explored, without any pre-specified hypothesis, among 167 individual, collective and environmental covariates via generalized estimating equations modeling. We adopted a multimodel selection procedure to control for model selection uncertainty.ResultsThis analysis is based on a sample size of 1121 subjects. The final multivariable model identified one risk factor (history of asthma, OR = 2·17; 95% CI: 1·02–4·62) and three protective factors: pre-epidemic serological titer (OR = 0·51 per doubling of the titer; 95% CI: 0·39–0·67), green tea consumption a minimum of two times a week (OR = 0·39; 95% CI: 0·18–0·84), and proportion of subjects in the household always covering their mouth while coughing/sneezing (OR = 0·93 per 10% increase; 95% CI: 0·86–1·00).Conclusion This exploratory study provides further support of previously reported risk factors and highlights the importance of collective protective behaviors in the household. Further analyses will be conducted to explore these findings.
    Influenza and Other Respiratory Viruses 11/2014; · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite its global relevance, our understanding of how influenza A virus transmission impacts the overall population dynamics of this RNA virus remains incomplete. To define this dynamic, we inserted neutral barcodes into the influenza A virus genome to generate a population of viruses that can be individually tracked during transmission events. We find that physiological bottlenecks differ dramatically based on the infection route and level of adaptation required for efficient replication. Strong genetic pressures are responsible for bottlenecks during adaptation across different host species, whereas transmission between susceptible hosts results in bottlenecks that are not genetically driven and occur at the level of the recipient. Additionally, the infection route significantly influences the bottleneck stringency, with aerosol transmission imposing greater selection than direct contact. These transmission constraints have implications in understanding the global migration of virus populations and provide a clearer perspective on the emergence of pandemic strains. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell host & microbe. 10/2014; 16(5):691-700.

Full-text (2 Sources)

Download
22 Downloads
Available from
May 29, 2014