Article

Presence of Antibodies against Genogroup VI Norovirus in Humans

Virology Journal (Impact Factor: 2.09). 06/2013; 10(1):176. DOI: 10.1186/1743-422X-10-176
Source: PubMed

ABSTRACT BACKGROUND: Noroviruses are important enteric pathogens in humans and animals. Recently, we reported a novel canine norovirus (CaNoV) in dogs with diarrhea belonging to a new genogroup (GVI). No data are available on exposure of humans to this virus. METHODS: Sera from 373 small animal veterinarians and 120 age-matched population controls were tested for IgG antibodies to CaNoV by a recombinant virus like particle based enzyme-linked immunosorbent assay. RESULTS: Antibodies to CaNoV were found in 22.3% of the veterinarians and 5.8% of the control group (p < 0.001). Mean corrected OD450 values for CaNoV antibodies were significantly higher in small animal veterinarians compared to the control group. CONCLUSIONS: These findings suggest that CaNoV may infect humans and small animal veterinarians are at an increased risk for exposure to this virus. Additional studies are needed to assess if this virus is able to cause disease in humans.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noroviruses (NoVs) of genogroup IV (GIV) (Alphatron-like) cause infections in humans and in carnivorous animals such as dogs and cats. We screened an age-stratified collection of serum samples from 535 humans in Italy, using virus-like particles of genotypes GIV.1, circulating in humans, and GIV.2, identified in animals, in ELISA, in order to investigate the prevalence of GIV NoV-specific IgG antibodies. Antibodies specific for both genotypes were detected, ranging from a prevalence of 6.6% to 44.8% for GIV.1 and from 6.8% to 15.1% for GIV.2 among different age groups. These data are consistent with a higher prevalence of GIV.1 strains in the human population. Analysis of antibodies against GIV.2 suggests zoonotic transmission of animal NoVs, likely attributable to interaction between humans and domestic pets. This finding, and recent documentation of human transmission of NoVs to dogs, indicate the possibility of an evolutionary relationship between human and animal NoVs.
    Emerging infectious diseases 11/2014; 20(11):1828-32. DOI:10.3201/eid2011.131601 · 7.33 Impact Factor
  • Article: Norovirus.
    [Show abstract] [Hide abstract]
    ABSTRACT: Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human noroviruses (HuNV) are a significant cause of viral gastroenteritis in man worldwide. HuNV attaches to cell surface carbohydrate structures known as histo-blood group antigens (HBGAs) prior to internalization, and HBGA polymorphism amongst human populations is closely linked to susceptibility to HuNV. Noroviruses are divided into 6 genogroups, with human strains grouped into genogroups I, II and IV. Canine norovirus (CNV) is a recently discovered pathogen in dogs, with strains classified into genogroups IV and VI. Whereas it is known that GI-GIII noroviruses bind to HBGAs and GV noroviruses recognize terminal sialic acid residues, the attachment factors for GIV or GVI noroviruses have not been reported. This study sought to determine the carbohydrate binding specificity of CNV, and compare this to the binding specificity of noroviruses from other genogroups. A panel of synthetic oligosaccharides were used to assess the binding specificity of CNV virus-like particles (VLPs), and identified α1,2 fucose as a key attachment factor. CNV VLP binding to canine saliva and tissue samples using ELISAs and immunohistochemistry confirmed that α1,2 fucose-containing H and A antigens of the HBGA family were recognized by CNV. Phenotyping studies demonstrated expression of these antigens in a population of dogs. The virus-ligand interaction was further characterized using blockade studies, cell lines expressing HBGAs and enzymatic removal of candidate carbohydrates from tissue sections. Recognition of HBGAs by CNV provides new insights into evolution of noroviruses and raises concerns regarding the potential for zoonotic transmission of CNV to humans.
    Journal of Virology 07/2014; 88(18). DOI:10.1128/JVI.01008-14 · 4.65 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 20, 2014