The Effect of Injection Routes on the Biodistribution, Clearance and Tumor Uptake of Carbon Dots.

ACS Nano (Impact Factor: 12.03). 06/2013; 7(7). DOI: 10.1021/nn401911k
Source: PubMed

ABSTRACT The emergence of photoluminescent carbon-based nanomaterials has shown exciting potential in the development of benign nanoprobes. However, the in vivo kinetic behaviors of these particles that are necessary for clinical translation are poorly understood to date. In this study, fluorescent carbon dots (C-dots) were synthesized and the effect of three injection routes on their fate in vivo was explored by using both near-infrared fluorescence (NIRF) and positron emission tomography (PET) imaging techniques. We found that C-dots are efficiently and rapidly excreted from the body after all three injection routes. The clearance rate of C-dots is ranked as: intravenous > intramuscular > subcutaneous. The particles had relatively low retention in the reticuloendothelial system (RES) and showed high tumor-to-background contrast. Furthermore, different injection routes also resulted in different blood clearance patterns and tumor uptakes of C-dots. These results satisfy the need for clinical translation and should promote efforts to further investigate the possibility of using carbon-based nanoprobes in a clinical setting. More broadly, we provide a testing blueprint for in vivo behavior of nanoplatforms under various injection routes, an important step forward towards safety and efficacy analysis of nanoparticles.


Available from: Ki Young Choi, Jun 19, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon dots (C-dots), since their first discovery in 2004 by Scrivens et al. during purification of single-walled carbon nanotubes, have gradually become a rising star in the fluorescent nanoparticles family, due to their strong fluorescence, resistance to photobleaching, low toxicity, along with their abundant and inexpensive nature. In the past decade, the procedures for preparing C-dots have become increasingly versatile and facile, and their applications are being extended to a growing number of fields. In this review, we focused on introducing the biological applications of C-dots, hoping to expedite their translation to the clinic.
    Science China-Chemistry 04/2014; 57(4):522-539. DOI:10.1007/s11426-014-5064-4 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The novel optical, electrical, and magnetic properties of ultra-small inorganic nanoparticles make them very attractive in diverse applications in the fields of health, clean and renewable energy, and environmental sustainability. This article comprehensively summarizes state-of-the-art fluorescence imaging using ultra-small nanoparticles as probes, including quantum dots, metal nanoclusters, carbon nanomaterials, up-conversion, and silicon nanomaterials.
    04/2014; 2(19). DOI:10.1039/C3TB21760D
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon dots (or carbon quantum dots in some literature reports), generally small carbon nanoparticles with various surface passivation effects, have attracted widespread attention in recent years, with a rapidly increasing number of research publications. The reported studies covered many aspects of carbon dots, from the development of many new synthetic methodologies to an improved mechanistic elucidation and to the exploration of application opportunities, especially for those in the fluorescence imaging of cells and tissues. There have also been significant advances in the establishment of a shared mechanistic framework for carbon dots and other carbon-based quantum dots, graphene quantum dots in particular. In this article, representative recent studies for more efficient syntheses of better-performing carbon dots are highlighted along with results from explorations of their various bioimaging applications in vitro and in vivo. Similar fluorescence properties and potential imaging uses of some graphene quantum dots are also discussed, toward a more consistent and uniform understanding of phenomenologically different carbon-based quantum dots.
    RSC Advances 01/2014; 4(21):10791. DOI:10.1039/c3ra47683a · 3.71 Impact Factor