The Effect of Injection Routes on the Biodistribution, Clearance and Tumor Uptake of Carbon Dots.

ACS Nano (Impact Factor: 12.03). 06/2013; DOI: 10.1021/nn401911k
Source: PubMed

ABSTRACT The emergence of photoluminescent carbon-based nanomaterials has shown exciting potential in the development of benign nanoprobes. However, the in vivo kinetic behaviors of these particles that are necessary for clinical translation are poorly understood to date. In this study, fluorescent carbon dots (C-dots) were synthesized and the effect of three injection routes on their fate in vivo was explored by using both near-infrared fluorescence (NIRF) and positron emission tomography (PET) imaging techniques. We found that C-dots are efficiently and rapidly excreted from the body after all three injection routes. The clearance rate of C-dots is ranked as: intravenous > intramuscular > subcutaneous. The particles had relatively low retention in the reticuloendothelial system (RES) and showed high tumor-to-background contrast. Furthermore, different injection routes also resulted in different blood clearance patterns and tumor uptakes of C-dots. These results satisfy the need for clinical translation and should promote efforts to further investigate the possibility of using carbon-based nanoprobes in a clinical setting. More broadly, we provide a testing blueprint for in vivo behavior of nanoplatforms under various injection routes, an important step forward towards safety and efficacy analysis of nanoparticles.

  • [Show abstract] [Hide abstract]
    ABSTRACT: During the past ten years significant advances have been achieved in quantum dot (QD) research field. The new synthetic methods and the discovery of new types of QDs have enabled a variety of new applications of QDs for bioimaging and biosensing. This review will focus on the most recent progress of QDs for biomedical applications. Ample examples will be given in this review on newly developed synthetic methods of QDs, non-toxic QDs, QDs for biomolecule detection, cell and animal imaging, and disease therapy.
    Colloids and surfaces B: Biointerfaces 01/2014; · 4.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic applications of exogenous nitric oxide are usually limited by its short half-life and its vulnerability to many biological substances, thus straightforward and precise spatiotemporal control of NO delivery may be critical to its therapeutic effects. Herein, the mitochondria-targeted and photoresponsive NO-releasing nanosystem is demonstrated as a new approach for cancer treatment. The nanosystem is fabricated by covalently incorporating a NO photo-donor and a mitochondria targeting ligand onto carbon-dots; accordingly, multi-functionalities (mitochondria-targeting, light-enhanced efficient NO-releasing, and cell imaging) are achieved. The in vitro NO release profiles for the nanosystem show that the duration of NO release from the present C-dot-based nanosystem containing immobilized SNO can be extended up to 8 hours or more. Upon cellular internalization, the nanosystem can target mitochondria and release NO. The action of the nanosystem on three cancer cell lines is evaluated; it is found that the targeted NO-releasing system can cause high cytotoxicity towards the cancer cells by specifically damaging their mitochondria. Additionally, light irradiation can amplify the cell apoptosis by enhancing NO release. These observations demonstrate that incorporating mitochondria-targeting ligand onto a NO-releasing system can enhance its pro-apoptosis action, thereby providing new insights for exploiting NO in cancer therapy.
    Small 05/2014; · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of nanoparticles holds promise for medical applications, such as X-ray imaging, photothermal therapy and radiotherapy. However, the in vivo toxicity of inorganic nanoparticles raises some concern regarding undesirable side effects which prevent their further medical application. Ultrasmall sub-5.5 nm particles can pass through the barrier for renal clearance, minimizing their toxicity. In this letter we address some recent interesting work regarding in vivo toxicity and renal clearance, and discuss the possible strategy of utilizing ultrasmall nanomaterials. We propose that small hydrodynamic sized nanoclusters can achieve both nontoxic and therapeutic clinical features.
    International Journal of Nanomedicine 01/2014; 9:2069-72. · 4.20 Impact Factor


Available from
Jun 19, 2014

Similar Publications