Propiedades hídricas y anisotropía en rocas sedimentarias porosas.

Geo-Temas (SGE), 13 07/2012;

ABSTRACT El agua es uno de los agentes de deterioro más importante y las propiedades hídricas de las rocas juegan un papel fundamental a la hora de valorar su durabilidad. Además en las rocas sedimentarias la presencia de anisotropías puede condicionar el comportamiento del agua en su sistema poroso y debe tenerse en cuenta a la hora de elegir sus aplicaciones como piedras de edificación. En este trabajo se
analiza la anisotropía de diferentes parámetros hídricos vectoriales relacionados con la absorción de agua y con la circulación del vapor de agua en seis tipos rocosos sedimentarios (calizas y areniscas de elevada porosidad, dolomía y travertino de menor porosidad), correlacionándose dichos parámetros entre sí, así como con las características de la porosidad. Se concluye que en las rocas sedimentarias porosas el grado de anisotropía es bajo y que la permeabilidad al vapor de agua presenta buena relación con la absorción capilar y, sobre todo, con la absorción de gotas de agua. En este tipo de rocas el sencillo ensayo de absorción de gotas de agua permite estimar la permeabilidad al vapor de agua.

Download full-text


Available from: Fco. Javier Alonso, Sep 26, 2015
471 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among hygric properties of stone material, the sorption behaviour is of essential importance because of the permanence of the processes involved. New results from static sorption experiments performed by standard techniques and by a new tool are reported for six different building stones. Furthermore, an example of dynamic sorption behaviour under continuously changing humidity is presented. For the static equilibrium sorption measurements a close relation to the stone type, its pore properties, such as specific inner surface, pore volume, pore size distribution as well as capillary water uptake and water saturation, is drawn. The comparison of the different data allows us to retrieve correlations between material features that are crucial for weathering processes. The sorption–desorption processes respond spontaneously on even small humidity changes as shown by the dynamic sorption experiment. A permanent breathing-process of the material is imposed.
    Environmental Geology 01/2004; 46(3):391-401. DOI:10.1007/s00254-004-1040-1 · 1.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the pore system of six different types of sedimentary stone (two limestones, two sandstones, one dolostone and one travertine). Techniques based on the direct observation of the pore system (optical and scanning electron microscopes, digital image analysis) were combined with others used for indirect characterization (mercury intrusion porosimetry, N2 adsorption, hydric tests, and vapour permeability). In addition, we performed accelerated decay tests to determine the durability of the stones and to check the consistency of the results obtained in the pore system study. Digital image analysis allowed us to calculate the pore size distribution and the total porosity. Digital image analysis always gave higher values for total porosity than those determined by porosimetry and hydric tests, which only measure open porosity. The density values were congruent with the mineralogy of the stones. The stone that obtained the best results in the various tests in terms of its petrophysical parameters was dolostone, while the worst performance was by one of the two limestones. These results were confirmed by the decay tests. The combined use of these different techniques gave us an accurate interpretation of the pore systems of the six different stones, and also enabled us to correct misleading interpretations caused by the limitations of using one single technique. Our findings also provide useful information to help prevent the decay of these stones.
    Engineering Geology 03/2011; 118(2011):110-121. DOI:10.1016/j.enggeo.2011.01.008 · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper outlines the need for a description to quantify the natural response of rock to the presence of water. It discusses the change in mass that occurs in a sample exposed to water vapour over time could provide such a description, and the reason for preferring this method over that of immersing samples in water. The systematic testing required to assess the influence of experimental variables upon the mass-vs-time signature is illustrated. Three quantities are obtained from the test: the change in mass under a given relative humidity, the time required for that change to occur and the rate of change of mass with time. This kinetic response of samples to water vapour also provides a simple way of assessing the specific surface of samples. Examples of the calculations required to obtain these quantities are provided so that the kinetic response of samples to water vapour may be added to other petrophysical descriptions.Larticle souligne la ncessit, pour bien dcrire une roche, de quantifier son volution naturelle en prsence deau. Il examine le changement de masse dans le temps dun chantillon soumis une variation de la teneur en vapeur deau de latmosphre ambiante. On prsente lexprimentation propose pour valuer linfluence des variables exprimentales sur la signature masse en fonction du temps de lchantillon. Lessai fournit trois donnes : la variation de masse pour une variation dhumidit relative donne ; le temps ncessaire pour obtenir cette variation ; le taux de variation en fonction du temps. La cintique de la variation fournit aussi une faon simple dvaluer la surface spcifique des chantillons. Des exemples des calculs proposs pour accder ces valeurs sont fournis. Il est donc possible dajouter ce paramtre aux autres caractrisations ptrophysiques.
    Bulletin of Engineering Geology and the Environment 07/2004; 63(3):179-189. DOI:10.1007/s10064-004-0241-x · 0.76 Impact Factor