Hydrogel-coated microfluidic channels for cardiomyocyte culture.

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA. .
Lab on a Chip (Impact Factor: 5.75). 05/2013; 13(18). DOI: 10.1039/c3lc50252j
Source: PubMed

ABSTRACT The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5% (w/v) than on 10% (w/v) hydrogel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches.


Available from: Anthony S Weiss, Dec 12, 2013
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were -50mV and 85nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were -38mV and 140nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed.
    Materials Science and Engineering C 11/2014; 44:345–351. DOI:10.1016/j.msec.2014.08.039 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a possibility of use of hydrogel in microfluidic system, which can be a promising tool for threedimensional cell culture. In the research the commercially available self-assembling peptide hydrogel Puramatrix was used. Gelation of this hydrogel is initiated by the contact with culture medium. That’s why it is critical that no salts or culture medium come in contact with this hydrogel until gelation is desired. The geometry of the designed microdevice enables hydrodynamic focusing of liquid hydrogel-cells mixture and then gelation of the mixture in the middle of the main microchannel due to the flow of the culture medium. As a sheath fluid sucrose solution was used. It provides also, in the first stage, isolation of culture medium (containing gelling salts) from liquid mixture of hydrogel and cells. When the flow of sucrose solution is turned off, the culture medium starts to be in contact to the hydrogel mixed with cell. As a result, simultaneously gelation of the hydrogel and encapsulation of cells in it are successfully achieved.
    13th International Scientific Conference on Optical Sensors and Electronic Sensors; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.
    Frontiers in Bioengineering and Biotechnology 11/2014; 2:52. DOI:10.3389/fbioe.2014.00052