Article

Assessment of delivery parameters with the multi-electrode array for development of a DNA vaccine against Bacillus anthracis.

Old Dominion University, Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA. Electronic address: .
Bioelectrochemistry (Amsterdam, Netherlands) (Impact Factor: 3.87). 04/2013; 94C:1-6. DOI: 10.1016/j.bioelechem.2013.04.004
Source: PubMed

ABSTRACT Gene electrotransfer (GET) enhances delivery of DNA vaccines by increasing both gene expression and immune responses. Our lab has developed the multi-electrode array (MEA) for DNA delivery to skin. The MEA was used at constant pulse duration (150ms) and frequency (6.67Hz). In this study, delivery parameters including applied voltage (5-45V), amount of plasmid (100-300μg), and number of treatments (2-3) were evaluated for delivery of a DNA vaccine. Mice were intradermally injected with plasmid expressing Bacillus anthracis protective antigen with or without GET and αPA serum titers measured. Within this experiment no significant differences were noted in antibody levels from varying dose or treatment number. However, significant differences were measured from applied voltages of 25 and 35V. These voltages generated antibody levels between 20,000 and 25,000. Serum from animals vaccinated with these conditions also resulted in toxin neutralization in 40-60% of animals. Visual damage was noted at MEA conditions of 40V. No damage was noted either visually or histologically from conditions of 35V or below. These results reflect the importance of establishing appropriate electrical parameters and the potential for the MEA in non-invasive DNA vaccination against B. anthracis.

0 Followers
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of increased temperature for gene electrotransfer has largely been considered negative. Many reports have published on the lack of heat from electrotransfer conditions to demonstrate that their effects are from the electrical pulses and not from a rise in temperature. Our hypothesis was to use low levels of maintained heat to aid in gene electrotransfer. The goal was to increase gene expression and/or reduce electric field. In our study we evaluated high and low electric field conditions from 90 V to 45 V which had been preheated to 40 °C, 43 °C, or 45 °C. Control groups of non-heated as well as DNA only were included for comparison in all experiments. Luciferase gene expression, viability, and percent cell distribution were measured. Our results indicated a 2–4 fold increase in gene expression that is temperature and field dependent. In addition levels of gene expression can be increased without significant decreases in cell death and in the case of high electric fields no additional cell death. Finally, in all conditions percent cell distribution was increased from the application of heat. From these results, we conclude that various methods may be employed depending on the end users desired goals. Electric field can be reduced 20-30% while maintaining or slightly increasing gene expression and increasing viability or overall gene expression and percent cell distribution can be increased with low viability.
    Bioelectrochemistry 08/2014; 103. DOI:10.1016/j.bioelechem.2014.08.007 · 3.87 Impact Factor