Pharmacogenomic Effects of Apolipoprotein E on Intracerebral Hemorrhage

Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
Stroke (Impact Factor: 6.02). 02/2009; 40(2):632-9. DOI: 10.1161/STROKEAHA.108.530402
Source: PubMed

ABSTRACT The purpose of the study was to evaluate the effect of APOE genotype and the feasibility of administering an apolipoprotein E-mimetic therapeutic to modify outcomes in a murine model of intracerebral hemorrhage.
Intracerebral hemorrhage was induced via stereotactic injection of 0.1 U Clostridial collagenase into the left basal ganglia of wild-type and apolipoprotein-E targeted-replacement mice, consisting of either homozygous 3/3 or 4/4 genotypes. Animals were randomized to receive either vehicle or apolipoprotein E-mimetic peptide. Outcomes included functional neurological tests (21-point neuroseverity score and Rotorod latency) over the initial 7 days after injury, radiographic and histological hemorrhage size at 3 and 7 days, brain water content for cerebral edema at 24 hours, and quantitative polymerase chain reaction for inflammatory markers at 6, 24, and 48 hours.
Apolipoprotein-E targeted-replacement mice consisting of homozygous 3/3 demonstrated superior neuroseverity scores and Rotorod latencies over the first 3 days after intracerebral hemorrhage, decreased cerebral edema at 24 hours, and reduced upregulation of IL-6 and endothelial nitric oxide synthase at 6 hours when compared to their apolipoprotein-E targeted-replacement mice consisting of homozygous 4/4 counterparts. After intravenous administration of 1 mg/kg apolipoprotein E-mimetic peptide, both wild-type and apolipoprotein-E targeted-replacement mice consisting of homozygous 4/4 exhibited improved functional outcomes over 7 days after intracerebral hemorrhage, less edema at 24 hours, and reduced upregulation of IL-6 and endothelial nitric oxide synthase when compared to mice that did not receive the peptide.
Our data indicate that APOE genotype influences neurological outcome after intracerebral hemorrhage in a murine model. In particular APOE4 is associated with poor functional outcome and increased cerebral edema. Additionally, this outcome can be modified by the addition of an apolipoprotein E mimetic-peptide, COG1410.

Download full-text


Available from: Daniel Laskowitz, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 01/2011; 31(1):351-61. DOI:10.1038/jcbfm.2010.99 · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is emerging evidence to suggest that brain natriuretic peptide (BNP) is elevated after acute brain injury, and that it may play an adaptive role in recovery through augmentation of cerebral blood flow (CBF). Through a series of experiments, we tested the hypothesis that the administration of BNP after different acute mechanisms of central nervous system (CNS) injury could improve functional recovery by improving CBF. C57 wild-type mice were exposed to either pneumatic-induced closed traumatic brain injury (TBI) or collagenase-induced intracerebral hemorrhage (ICH). After injury, either nesiritide (hBNP) (8 microg/kg) or normal saline were administered via tail vein injection at 30 min and 4 h. The mice then underwent functional neurological testing via rotorod latency over the following 5 days and neurocognitive testing via Morris water maze testing on days 24-28. Cerebral blood flow (CBF) was assessed by laser Doppler from 25 to 90 min after injury. After ICH, mRNA polymerase chain reaction (PCR) and histochemical staining were performed during the acute injury phase (<24 h) to determine the effects on inflammation. Following TBI and ICH, administration of hBNP was associated with improved functional performance as assessed by rotorod and Morris water maze latencies (p < 0.01). CBF was increased (p < 0.05), and inflammatory markers (TNF-alpha and IL-6; p < 0.05), activated microglial (F4/80; p < 0.05), and neuronal degeneration (Fluoro-Jade B; p < 0.05) were reduced in mice receiving hBNP. hBNP improves neurological function in murine models of TBI and ICH, and was associated with enhanced CBF and downregulation of neuroinflammatory responses. hBNP may represent a novel therapeutic strategy after acute CNS injury.
    Journal of neurotrauma 10/2009; 27(1):217-28. DOI:10.1089/neu.2009.1022 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postoperative cognitive dysfunction (POCD) is a significant cause of morbidity after noncardiac surgery. Identified risk factors are largely limited to demographic characteristics. We hypothesized that POCD was associated with apolipoprotein E4 (APOE4) genotype and plasma biomarkers of brain injury and inflammation. Three hundred ninety-four patients older than 55 yr undergoing major elective noncardiac surgery were enrolled in this prospective observational study. Apolipoprotein E genotyping was performed at baseline. Plasma was collected at baseline and end of surgery and at 4.5, 24, and 48-h postoperatively. Six protein biomarkers were assayed (B-type natriuretic peptide, C-reactive protein, D-dimer, matrix metalloproteinase-9, neuron-specific enolase, and S-100B). Neurocognitive testing was conducted at baseline and at 6 weeks and 1 yr after surgery; scores were subjected to factor analysis. The association of APOE4 and biomarkers with POCD was tested using multivariable regression modeling. Three hundred fifty patients (89%) completed 6-week neurocognitive testing. POCD occurred in 54.3% of participants at 6 weeks and 46.1% at 1 yr. There was no difference in POCD between patients with or without the APOE4 allele (56.6 vs. 52.6%; P = 0.58). The continuous cognitive change score (mean +/- SD) was similar between groups (APOE4: 0.05 +/- 0.27 vs. non-APOE4: 0.07 +/- 0.28; P = 0.53). Two hundred ninety-one subjects (74%) completed testing at 1 yr. POCD occurred in 45.9% of APOE4 subjects versus 46.3% of non-APOE4 subjects (P = 0.95). The cognitive score was again similar (APOE4: 0.08 +/- 0.27 vs. non-APOE4: 0.05 +/- 0.25; P = 0.39). Biomarker levels were not associated with APOE4 genotype or cognition at 6 weeks or 1 yr. Cognitive decline after major noncardiac surgery is not associated with APOE4 genotype or plasma biomarker levels.
    Anesthesiology 03/2010; 112(4):852-9. DOI:10.1097/ALN.0b013e3181d31fd7 · 6.17 Impact Factor