D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling.

Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Journal of Neuroscience (Impact Factor: 6.75). 01/2009; 28(52):14018-30. DOI: 10.1523/JNEUROSCI.4035-08.2008
Source: PubMed

ABSTRACT Endocannabinoid (eCB) signaling mediates short-term and long-term synaptic depression (LTD) in many brain areas. In the ventral tegmental area (VTA) and striatum, D(2) dopamine receptors cooperate with group I metabotropic glutamate receptors (mGluRs) to induce eCB-mediated LTD of glutamatergic excitatory and GABAergic inhibitory (I-LTD) synaptic transmission. Because D(2) receptors and group I mGluR agonists are capable of inducing the release of eCBs, the predominant hypothesis is that the cooperation between these receptors to induce eCB-mediated synaptic depression results from the combined activation of type I cannabinoid (CB(1)) receptors by the eCBs. By determining the downstream effectors for D(2) receptor and group I mGluR activation in VTA dopamine neurons, we show that group I mGluR activation contributes to I-LTD induction by enhancing eCB release and CB(1) receptor activation. However, D(2) receptor activation does not enhance CB(1) receptor activation, but facilitates I-LTD induction via direct inhibition of cAMP-dependent protein kinase A (PKA) signaling. We further demonstrate that cAMP/PKA signaling pathway is the downstream effector for CB(1) receptors and is required for eCB-mediated I-LTD induction. Our results suggest that D(2) receptors and CB(1) receptors target the same downstream effector cAMP/PKA signaling pathway to induce I-LTD and D(2) receptor activation facilitates eCB-mediated I-LTD in dopamine neurons not by enhancing CB(1) receptor activation, but by enhancing its downstream effects.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.
    Proceedings of the Japan Academy Ser B Physical and Biological Sciences 01/2014; 90(7):235-50. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
    International Review of Neurobiology 01/2014; 119C:257-307. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington's disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression in the central nervous system (CNS) and in the periphery in different models of HD and human HD tissue. To do this, we conducted a meta-analysis of differential gene expression in the ECS and DAS using publicly available microarray data. The consolidated data were summarized as observed changes in gene expression (OCGE) using a weighted sum for each gene. In addition, consolidated data were compared to previously published studies that were not available in the gene expression omnibus (GEO) database. The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD. The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.
    Pharmacology Research & Perspectives. 02/2015; 3(1).


Available from
May 21, 2014