Article

Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation

Department of Neurobiology, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education, Center for Protein Sciences, Peking University, 38 Xueyuan Road, Beijing 100083, China.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2009; 284(8):4960-7. DOI: 10.1074/jbc.M807704200
Source: PubMed

ABSTRACT Dynamic inactivation in Kv4 A-type K(+) current plays a critical role in regulating neuronal excitability by shaping action potential waveform and duration. Multifunctional auxiliary KChIP1-4 subunits, which share a high homology in their C-terminal core regions, exhibit distinctive modulation of inactivation and surface expression of pore-forming Kv4 subunits. However, the structural differences that underlie the functional diversity of Kv channel-interacting proteins (KChIPs) remain undetermined. Here we have described the crystal structure of KChIP4a at 3.0A resolution, which shows distinct N-terminal alpha-helices that differentiate it from other KChIPs. Biochemical experiments showed that competitive binding of the Kv4.3 N-terminal peptide to the hydrophobic groove of the core of KChIP4a causes the release of the KChIP4a N terminus that suppresses the inactivation of Kv4.3 channels. Electrophysiology experiments confirmed that the first N-terminal alpha-helix peptide (residues 1-34) of KChIP4a, either by itself or fused to N-terminal truncated Kv4.3, can confer slow inactivation. We propose that N-terminal binding of Kv4.3 to the core of KChIP4a mobilizes the KChIP4a N terminus, which serves as the slow inactivation gate.

2 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
    Frontiers in Cellular Neuroscience 03/2014; 8:82. DOI:10.3389/fncel.2014.00082 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kv4 is a voltage-gated K(+) channel, which underlies somatodendritic subthreshold A-type current (ISA) and cardiac transient outward K(+) (Ito) current. Various ion channel properties of Kv4 are known to be modulated by its auxiliary subunits such as K(+) channel interacting protein (KChIP) or dipeptidyl peptidase-like protein (DPP). KChIP is a cytoplasmic protein and increases the current amplitude, decelerates the inactivation and accelerates the recovery from inactivation of Kv4. Crystal structure analysis demonstrated that Kv4 and KChIP form an octameric complex with four Kv4 subunits and four KChIP subunits. However, it remains unknown whether the Kv4/KChIP complex can have a different stoichiometry other than 4:4. In this study, we expressed Kv4.2 and KChIP4 with various ratios in Xenopus oocytes and observed that the biophysical properties of Kv4.2 gradually changed with the increase in co-expressed KChIP4. The tandem repeat constructs of Kv4.2 and KChIP4 revealed that the 4:4 (Kv4.2:KChIP4) channel shows faster recovery than the 4:2 channel, suggesting that the biophysical properties of Kv4.2 changes depending on the number of bound KChIP4. Subunit counting by single molecule imaging revealed that the bound number of KChIP4 in each Kv4.2/KChIP4 complex was dependent on the expression level of KChIP4. Taken together, we conclude that the stoichiometry of Kv4/KChIP complex is variable and the biophysical properties of Kv4 change depending on the number of bound KChIP subunits.
    Journal of Biological Chemistry 05/2014; 289(25). DOI:10.1074/jbc.M114.563452 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.
    Biophysical Journal 09/2014; 107(5):1090–1104. DOI:10.1016/j.bpj.2014.07.038 · 3.83 Impact Factor