Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

Human Genetics Center and Division of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas, USA.
PLoS Genetics (Impact Factor: 8.17). 08/2010; 6(8). DOI: 10.1371/journal.pgen.1001045
Source: PubMed

ABSTRACT Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ~2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p


Available from: Thor Aspelund, Jun 03, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prospective studies consistently link low magnesium intake to higher type 2 diabetes (T2D) risk. We examined the association of common genetic variants [single nucleotide polymorphisms (SNPs)] in genes related to magnesium homeostasis with T2D risk and potential interactions with magnesium intake. Using the Women's Health Initiative-SNP Health Association Resource (WHI-SHARe) study, we identified 17 magnesium-related ion channel genes (583 SNPs) and examined their associations with T2D risk in 7287 African-American (AA; n = 1949 T2D cases) and 3285 Hispanic-American (HA; n = 611 T2D cases) postmenopausal women. We performed both single- and multiple-locus haplotype analyses. Among AA women, carriers of each additional copy of SNP rs6584273 in cyclin mediator 1 (CNNM1) had 16% lower T2D risk [OR: 0.84; false discovery rate (FDR)-adjusted P = 0.02]. Among HA women, several variants were significantly associated with T2D risk, including rs10861279 in solute carrier family 41 (anion exchanger), member 2 (SLC41A2) (OR: 0.54; FDR-adjusted P = 0.04), rs7174119 in nonimprinted in Prader-Willi/Angelman syndrome 1 (NIPA1) (OR: 1.27; FDR-adjusted P = 0.04), and 2 SNPs in mitochondrial RNA splicing 2 (MRS2) (rs7738943: OR = 1.55, FDR-adjusted P = 0.01; rs1056285: OR = 1.48, FDR-adjusted P = 0.02). Even with the most conservative Bonferroni adjustment, two 2-SNP-haplotypes in SLC41A2 and MRS2 region were significantly associated with T2D risk (rs12582312-rs10861279: P = 0.0006; rs1056285-rs7738943: P = 0.002). Among women with magnesium intake in the lowest 30% (AA: ≤0.164 g/d; HA: ≤0.185 g/d), 4 SNP signals were strengthened [rs11590362 in claudin 19 (CLDN19), rs823154 in SLC41A1, rs5929706 and rs5930817 in membra; HA: ≥0.313 g/d), rs6584273 in CNNM1 (OR: 0.71; FDR-adjusted P = 0.04) and rs1800467 in potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) (OR: 2.50; FDR-adjusted P = 0.01) were significantly associated with T2D risk. Our findings suggest important associations between genetic variations in magnesium-related ion channel genes and T2D risk in AA and HA women that vary by amount of magnesium intake. © 2015 American Society for Nutrition.
    Journal of Nutrition 03/2015; 145(3). DOI:10.3945/jn.114.203489 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ancient conserved domain protein/cyclin M (CNNM) 4 is an evolutionarily conserved Mg2+ transporter that localizes at the basolateral membrane of the intestinal epithelia. Here, we show the complementary importance of clathrin adaptor protein (AP) complexes AP-1A and AP-1B in basolateral sorting of CNNM4. We first confirmed the basolateral localization of both endogenous and ectopically expressed CNNM4 in Madin–Darby Canine Kidney cells, which form highly polarized epithelia in culture. Single knockdown of μ1B, a cargo-recognition subunit of AP-1B, did not affect basolateral localization, but simultaneous knockdown of the μ1A subunit of AP-1A abrogated localization. Mutational analyses showed the importance of three conserved dileucine motifs in CNNM4 for both basolateral sorting and interaction with μ1A and μ1B. These results imply that CNNM4 is sorted to the basolateral membrane by the complementary function of AP-1A and AP-1B.
    Biochemical and Biophysical Research Communications 11/2014; 455(3-4). DOI:10.1016/j.bbrc.2014.10.138 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value = 1.27×10-32), PRODH with proline (P-value = 1.11×10-19), SLC16A9 with carnitine level (P-value = 4.81×10-14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value = 1.65×10-19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value = 1.26×10-8), KCNJ16 with 3-hydroxybutyrate (P-value = 1.65×10-8) and 2p12 locus with valine (P-value = 3.49×10-8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.
    PLoS Genetics 01/2015; 11(1):e1004835. DOI:10.1371/journal.pgen.1004835 · 8.17 Impact Factor