Article

The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot-Induced Lung Inflammation in Mice.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 05/2013; 8(5):e64165. DOI: 10.1371/journal.pone.0064165
Source: PubMed

ABSTRACT Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/- and Gclm -/- mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/-) mice, whereas Gclm null (-/-) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/- mice, but not from Gclm -/- mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm -/- mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm -/- mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.

0 Bookmarks
 · 
187 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Si/SiO2 quantum dots (QDs) are novel particles with unique physicochemical properties that promote them as potential candidates for biomedical applications. Although their interaction with human cells has been poorly investigated, oxidative stress appears to be the main factor involved in the cytotoxicity of these nanoparticles. In this study, we show for the first time the influence of Si/SiO2 QDs on cellular redox homeostasis and glutathione distribution in human lung fibroblasts. The nanoparticles morphology, composition and structure have been investigated using high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. MRC-5 cells (human lung fibroblasts) were incubated with various concentrations of Si/SiO2 QDs ranging between 25 and 200 μg/mL for up to 72 h. The results of the MTT and sulforhodamine B assays showed that exposure to QDs led to a time-dependent decrease in cell viability and biomass. The increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels together with the lower glutathione content suggested that the cellular redox homeostasis was altered. Regarding GSH distribution, the first two days of treatment resulted in a localization of GSH mainly in the cytoplasm, while at longer incubation time the nuclear/cytoplasmic ratio indicated a nuclear localization. These modifications of cell redox state also affected the redox status of proteins, which was demonstrated by the accumulation of oxidized proteins and actin S-glutathionylation. In addition, the externalization of phosphatidylserine provided evidence that apoptosis might be responsible for cell death, but necrosis was also revealed. Our results suggest that Si/SiO2 quantum dots exerted cytotoxicity on MRC-5 cells by disturbing cellular homeostasis which had an effect upon protein redox status.
    Chemico-Biological Interactions 06/2014; · 2.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferritin (Ftn) undergoes photo-induced charge separation reactions that oxidize organic substrates. The liberated electrons are transferred through the protein shell to reduce Au ions to gold nanoparticles (AuNPs). We systematically varied the concentrations of citrate (electron donor), Au3+ or Au+ (electron acceptor), and ferritin (photo catalyst) to determine if careful control of these reactant concentrations would: (1) provide size control; (2) alter the morphology of the resulting AuNPs; and (3) alter the catalytic activity of the resulting AuNPs. The size and phosphate content of the ferritin iron core was also evaluated for its influence in this photocatalysis reaction. We report that as the Ftn concentration was increased to an optimal range, the number of AuNPs increased and showed smaller size, more spherical shape, and narrower distribution. Increasing the citrate concentration (electron donor) increased the rate of AuNP formation producing more spherical, uniform sized AuNPs. Increasing the Au3+ concentrations increased the number and sizes of the AuNPs. Since Au3+ reduction requires 3-electrons we proposed that using Au+ would increase the rate of the reaction. The photochemical reaction with Au+ was faster and produced 2.4 +/- 1.0 nm diameter AuNPs providing another method of size control. AuNPs were tested as reduction catalysts to convert 4-nitrophenol into 4-aminophenol. The smaller spherical AuNPs were better reduction catalysts than the larger AuNPs. In summary, using a single photochemical synthesis method we can reproducibly control the size, uniformity and catalytic activity of the resulting AuNPs simply by varying the concentrations or oxidation states of the reactants.
    RSC Advances 01/2014; 4(7):3472-3481. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.
    Nanotoxicology 07/2014; · 7.34 Impact Factor

Full-text

Download
54 Downloads
Available from
May 30, 2014