Laboratory diagnosis of malaria: conventional and rapid diagnostic methods.

From the Department of Pathology and Laboratory Services, Denver Health, Denver, Colorado
Archives of pathology & laboratory medicine (Impact Factor: 2.88). 06/2013; 137(6):805-11. DOI: 10.5858/arpa.2011-0602-RA
Source: PubMed

ABSTRACT Context.-The global control of malaria is more challenging than that of many other infectious diseases: malaria is vector borne, it is caused by 5 species of Plasmodium with different geographic distributions, infection is widespread in many regions, drug resistance is common, and the disease overlaps clinically with other infectious diseases. Therefore, malaria control programs, in addition to diagnosis and testing, must also target limiting spread of the disease through vector control. Although malaria control efforts have been successful in some regions, malaria remains one of the most important causes of death in sub-Saharan Africa, particularly in women and children. Objective.-To review the current literature regarding diagnostic methods available to detect clinical malaria, with an emphasis on comparing the strengths and limitations of each method. Data Sources.-Current World Health Organization malaria control report and other information, recent meta-analyses of diagnostic tests, primary literature concerning the performance characteristics of different tests, and primary literature concerning how diagnostic tests are used in daily practice. Conclusions.-The most commonly used method for identifying cases of malaria remains microscopic examination of peripheral blood, but there is growing use of malaria rapid diagnostic tests in many regions. One of the most important findings in the recent literature is that despite the widespread use of diagnostic tests, treatment is too often based on clinical findings rather than on results of diagnostic tests.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species).More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemiaEleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03).Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemiaEight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs.
    Cochrane database of systematic reviews (Online) 12/2014; 12(12):CD011431. DOI:10.1002/14651858.CD011431 · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria remains one of the leading communicable diseases in Ethiopia. Early diagnosis combined with prompt treatment is one of the main strategies for malaria prevention and control. Despite its limitation, Giemsa microscopy is still considered to be the gold standard for malaria diagnosis. This study aimed to compare the performance of Giemsa microscopy with nested polymerase chain reaction (nPCR) for the diagnosis of malaria in north-west Ethiopia.
    Malaria Journal 05/2014; 13(1):174. DOI:10.1186/1475-2875-13-174 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a novel method for direct detection of Plasmodium falciparum histidine rich protein-2 (PfHRP-2) antigen using carbon nanofiber (CNF) forests grown on glass microballoons (NMBs). Secondary antibodies specific to PfHRP-2 densely attached to the CNFs exhibit extraordinary ability for the detection of minute concentrations of Plasmodium species. A sandwich immunoassay protocol was employed, where a glass substrate was used to immobilize primary antibodies at designated capture zones. High signal amplification was obtained in both colorimetric and electrical measurements due to the CNFs through specific binding. As a result, it was possible to detect PfHRP-2 levels as low as 0.025 ng/mL concentration in phosphate buffered saline (PBS) using a visual signal within only 1 min of test duration. Lower limits of 0.01 ng/mL was obtained by measuring the electrical resistivity of the capture zone. This method is also highly selective and specific in identifying PfHRP-2 and other Plasmodium species from the same solution. In addition, the stability of the labeling mechanism eliminates the false signals generated by the use of dyes in current malaria rapid diagnostic test kits (MRDTs). Thus, the rapid, sensitive and high signal amplification capabilities of NMBs is a promising tool for early diagnosis of malaria and other infectious diseases.
    Sensors 08/2014; 14(8):14686-14699. DOI:10.3390/s140814686 · 2.05 Impact Factor