Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants

Black Dog Institute, Sydney, Australia.
The International Journal of Neuropsychopharmacology (Impact Factor: 5.26). 05/2013; 16(09):1-10. DOI: 10.1017/S1461145713000539
Source: PubMed

ABSTRACT Computer-administered cognitive training (CT) tasks are a common component of cognitive remediation treatments. There is growing evidence that transcranial direct current stimulation (tDCS), when given during cognitive tasks, improves performance. This randomized, controlled trial explored the potential synergistic effects of CT combined with tDCS in healthy participants. Altogether, 60 healthy participants were randomized to receive either active or sham tDCS administered during training on an adaptive CT task (dual n-back task), or tDCS alone, over 10 daily sessions. Cognitive testing (working memory, processing speed, executive function, reaction time) was conducted at baseline, end of the 10 sessions, and at 4-wk follow-up to examine potential transfer effects to non-trained tasks. Altogether, 54 participants completed the study. Over the 10 'online' sessions, participants in the active tDCS+CT condition performed more accurately on the CT task than participants who received sham tDCS+CT. The performance enhancing effect, however, was present only during tDCS and did not result in greater learning (i.e. improvement over sessions) on the CT task. These results confirm prior reports of enhancement of cognitive function during tDCS stimulation. At follow-up, the active tDCS+CT group, but not the sham tDCS+CT group, showed greater gains on a non-trained test of attention and working memory than the tDCS-only group (p < 0.01). Although this gain can mainly be attributable to training, this result suggests that active tDCS may have a role in further enhancing outcomes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is much interest in early intervention for the prevention or postponement of dementia in Alzheimer's disease (AD). The results of drugs trials in this regard have thus far been disappointing, and non-pharmacological interventions are receiving increased attention. One such intervention is complex cognitive activity. Evidence from epidemiological studies suggests that participation in stimulating mental activities is associated with lowered dementia risk. The introduction of novel and complex cognitive interventions to healthy adults and those with cognitive impairment may represent an efficacious treatment option to improve cognition, lower dementia incidence, and slow rate of decline. This review examines the evidence for restorative cognitive training (CT) and addresses a number of clinically relevant issues regarding cognitive benefit and its transfer and persistence. Although the number of randomized controlled trials is limited, preliminary evidence suggests that CT may provide immediate and longer term cognitive benefits which generalize to non-trained domains and non-cognitive functions, with supervised small group multi-domain training providing greatest benefits. Possible neuroplastic mechanisms are discussed, and recommendations for further research and clinical implementation provided.
    Journal of Alzheimer's disease: JAD 08/2014; 42(Suppl 4):S551-S559. DOI:10.3233/JAD-141302
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813-822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193-199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.
    Journal of Cognitive Neuroscience 04/2014; 26(11). DOI:10.1162/jocn_a_00657
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, growing interest emerged in the enhancement of human potential by means of non-invasive brain stimulation. In particular, anodal transcranial direct current stimulation (atDCS) has been shown to exert beneficial effects on motor and higher cognitive functions. However, the majority of transcranial direct current stimulation (tDCS) studies have assessed effects of single stimulation sessions that are mediated by transient neural modulation. Studies assessing the impact of multiple stimulation sessions on learning that may induce long-lasting behavioural and neural changes are scarce and have not yet been accomplished in the language domain in healthy individuals.
    Cortex 08/2013; 50. DOI:10.1016/j.cortex.2013.07.013