Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12).

Department of Nutrition, University of California, Davis, CA 95616.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2013; DOI: 10.1073/pnas.1222142110
Source: PubMed

ABSTRACT Zn(2+) is required for many aspects of neuronal structure and function. However, the regulation of Zn(2+) in the nervous system remains poorly understood. Systematic analysis of tissue-profiling microarray data showed that the zinc transporter ZIP12 (slc39a12) is highly expressed in the human brain. In the work reported here, we confirmed that ZIP12 is a Zn(2+) uptake transporter with a conserved pattern of high expression in the mouse and Xenopus nervous system. Mouse neurons and Neuro-2a cells produce fewer and shorter neurites after ZIP12 knockdown without affecting cell viability. Zn(2+) chelation or loading in cells to alter Zn(2+) availability respectively mimicked or reduced the effects of ZIP12 knockdown on neurite outgrowth. ZIP12 knockdown reduces cAMP response element-binding protein activation and phosphorylation at serine 133, which is a critical pathway for neuronal differentiation. Constitutive cAMP response element-binding protein activation restores impairments in neurite outgrowth caused by Zn(2+) chelation or ZIP12 knockdown. ZIP12 knockdown also reduces tubulin polymerization and increases sensitivity to nocodazole following neurite outgrowth. We find that ZIP12 is expressed during neurulation and early nervous system development in Xenopus tropicalis, where ZIP12 antisense morpholino knockdown impairs neural tube closure and arrests development during neurulation with concomitant reduction in tubulin polymerization in the neural plate. This study identifies a Zn(2+) transporter that is specifically required for nervous system development and provides tangible links between Zn(2+), neurulation, and neuronal differentiation.

Download full-text


Available from: Robert B Rucker, Jun 30, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Developmental zinc (Zn) deficiency increases the incidence of heart anomalies in rat fetuses, in regions and structures derived from the outflow tract. Given that the development of the outflow tract requires the presence of cardiac neural crest cells (cNCC), we speculated that Zn deficiency selectively kills cNCC and could lead to heart malformations.METHODS Cardiac NCC were isolated from E10.5 rat embryos and cultured in control media (CTRL), media containing 3 μM of the cell permeable metal chelator N, N, N′, N′-tetrakis (2-pyridylmethyl) ethylene diamine (TPEN), or in TPEN-treated media supplemented with 3 μM Zn (TPEN + Zn). Cardiac NCC were collected after 6, 8, and 24 h of treatment to assess cell viability, proliferation, and apoptosis.RESULTSThe addition of TPEN to the culture media reduced free intracellular Zn pools and cell viability as assessed by low ATP production, compared to cells grown in control or Zn-supplemented media. There was an accumulation of reactive oxygen species, a release of mitochondrial cytochrome c into the cytoplasm, and an increased cellular expression of active caspase-3 in TPEN-treated cNCC compared to cNCC cultured in CTRL or TPEN + Zn media.CONCLUSION Zn deficiency can result in oxidative stress in cNCC, and subsequent decreases in their population and metabolic activity. These data support the concept that Zn deficiency associated developmental heart defects may arise in part as a consequence of altered cNCC metabolism
    Birth Defects Research Part B Developmental and Reproductive Toxicology 02/2015; 104(1). DOI:10.1002/bdrb.21135 · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The essentiality of zinc for normal brain development is well established. It has been suggested that primary and secondary zinc deficiencies can contribute to the occurrence of numerous human birth defects, including many involving the central nervous system. In a recent study, we searched for zinc transporter genes that were critical for neurodevelopment. We confirmed that ZIP12 is a zinc transporter encoded by the gene slc39a12 that is highly expressed in the central nervous systems of human, mouse, and frog (Xenopus tropicalis).Using loss-of-function methods, we determined that ZIP12 is required for neuronal differentiation and neurite outgrowth and necessary for neurulation and embryonic viability. These results highlight an essential need for zinc regulation during embryogenesis and nervous system development. We suggest that slc39a12 is a candidate gene for inherited neurodevelopmental defects in humans.
    Communicative & integrative biology 11/2013; 6(6):e26207. DOI:10.4161/cib.26207
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc, an essential trace element, plays a critical role in cell signaling, and defect(s) in zinc homeostasis may contribute to adverse physiological and pathological conditions, including cancer. Zinc is present in healthy prostate at a very high concentration, where it is required for important prostatic functions. However, zinc levels are significantly diminished in cancerous tissue, and intracellular zinc level is inversely correlated with prostate cancer progression. During neoplastic transformation, zinc-accumulating, citrate-producing normal prostate cells are metabolically transformed to citrate oxidizing cells that lose the ability to accumulate zinc. Interestingly, zinc has been shown to function as chemopreventive agent against prostate cancer, albeit at high doses, which may lead to many adverse effects. Therefore, novel means to enhance bioaccumulation of sufficient zinc in prostate cells via increasing zinc transport could be useful against prostate cancer. On the basis of available evidence, we present a possibility that the grape antioxidant resveratrol, when given with zinc, may lead to retuning the zinc homeostasis in prostate, thereby abolishing or reversing malignancy. If experimentally verified in in vivo model(s) of prostate cancer, such as transgenic mouse models, this may lead to novel means toward management of prostate cancer and other conditions with compromised zinc homeostasis.
    Cell cycle (Georgetown, Tex.) 05/2014; 13(12). DOI:10.4161/cc.29334 · 5.01 Impact Factor