Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration

Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, CA 94158.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 05/2013; 110(24). DOI: 10.1073/pnas.1301119110
Source: PubMed


Emotional changes are common in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Intrinsic connectivity imaging studies suggest that default mode network degradation in AD is accompanied by the release of an emotion-relevant salience network. We investigated whether emotional contagion, an evolutionarily conserved affect-sharing mechanism, is higher in MCI and AD secondary to biological alterations in neural networks that support emotion. We measured emotional contagion in 237 participants (111 healthy controls, 62 patients with MCI, and 64 patients with AD) with the Interpersonal Reactivity Index Personal Distress subscale. Depressive symptoms were evaluated with the Geriatric Depression Scale. Participants underwent structural MRI, and voxel-based morphometry was used to relate whole-brain maps to emotional contagion. Analyses of covariance found significantly higher emotional contagion at each stage of disease progression [controls < MCI (P < 0.01) and MCI < AD (P < 0.001)]. Depressive symptoms were also higher in patients compared with controls [controls < MCI (P < 0.01) and controls < AD (P < 0.0001)]. Higher emotional contagion (but not depressive symptoms) was associated with smaller volume in right inferior, middle, and superior temporal gyri (PFWE < 0.05); right temporal pole, anterior hippocampus, parahippocampal gyrus; and left middle temporal gyrus (all P < 0.001, uncorrected). These findings suggest that in MCI and AD, neurodegeneration of temporal lobe structures important for affective signal detection and emotion inhibition are associated with up-regulation of emotion-generating mechanisms. Emotional contagion, a quantifiable index of empathic reactivity that is present in other species, may be a useful tool with which to study emotional alterations in animal models of AD.

Download full-text


Available from: Jennifer S Yokoyama, May 01, 2014
52 Reads
    • "Prior to fMRI scanning, each participant completed the IRI (Davis, 1983), a 28-item self-report measure of interpersonal emotional and cognitive functioning. We used the PD subscale to characterize individual differences in emotion contagion (emotionbased decision making; Preston & Hofelich, 2012; Sturm et al., 2013) and the PT subscale to measure individual differences in cognitive PT (cognitive-based decision making). PD measures self-oriented feelings of distress and arousal when other people are involved in emotionally salient experiences (Davis, 1983). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to identify the cause of another person's emotional reaction is an important component associated with improved success of social relationships and survival. Although many studies have investigated the mechanisms involved in emotion recognition, very little is currently known regarding the processes involved during emotion attribution decisions. Research on complementary "emotion understanding" mechanisms, including empathy and theory of mind, has demonstrated that emotion understanding decisions are often made through relatively emotion- or cognitive-based processing streams. The current study was designed to investigate the behavioral and brain mechanisms involved in emotion attribution decisions. We predicted that dual processes, emotional and cognitive, are engaged during emotion attribution decisions. Sixteen healthy adults completed the Interpersonal Reactivity Index to characterize individual differences in tendency to make emotion- versus cognitive-based interpersonal decisions. Participants then underwent functional MRI while making emotion attribution decisions. We found neuroimaging evidence that emotion attribution decisions engage a similar brain network as other forms of emotion understanding. Further, we found evidence in support of a dual processes model involved during emotion attribution decisions. Higher scores of personal distress were associated with quicker emotion attribution decisions and increased anterior insula activity. Conversely, higher scores in perspective taking were associated with delayed emotion attribution decisions and increased prefrontal cortex and premotor activity. These findings indicate that the making of emotion attribution decisions relies on dissociable emotional and cognitive processing streams within the brain. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
    Emotion 02/2015; 15(3). DOI:10.1037/emo0000053 · 3.88 Impact Factor
  • Source
    • "Structural images were acquired in MAC samples using previously described sequences [Sturm et al., 2013] on 3 T (N 5 103) and 1.5 T (N 5 19) scanners. T 1 -weighted structural MR images were segmented in SPM8 running under Matlab then preprocessed with DARTEL [Ashburner, 2007] using previously described methods [Ashburner and Friston, 2000; Wilson et al., 2009]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Identify genetic factors associated with cognitive maintenance in late life and assess their association with gray matter (GM) volume in brain networks affected in aging. Methods We conducted a genome-wide association study of ∼2.4 M markers to identify modifiers of cognitive trajectories in Caucasian participants (N = 7,328) from two population-based cohorts of non-demented elderly. Standardized measures of global cognitive function (z-scores) over 10 and 6 years were calculated among participants and mixed model regression was used to determine subject-specific cognitive slopes. “Cognitive maintenance” was defined as a change in slope of ≥ 0 and was compared with all cognitive decliners (slope < 0). In an independent cohort of cognitively normal older Caucasians adults (N = 122), top association findings were then used to create genetic scores to assess whether carrying more cognitive maintenance alleles was associated with greater GM volume in specific brain networks using voxel-based morphometry. ResultsThe most significant association was on chromosome 11 (rs7109806, P = 7.8 × 10−8) near RIC3. RIC3 modulates activity of α7 nicotinic acetylcholine receptors, which have been implicated in synaptic plasticity and beta-amyloid binding. In the neuroimaging cohort, carrying more cognitive maintenance alleles was associated with greater volume in the right executive control network (RECN; PFWE = 0.01). Conclusions These findings suggest that there may be genetic loci that promote healthy cognitive aging and that they may do so by conferring robustness to GM in the RECN. Future work is required to validate top candidate genes such as RIC3 for involvement in cognitive maintenance. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 09/2014; 35(9). DOI:10.1002/hbm.22494 · 5.97 Impact Factor
  • Source
    • "Another emotion-related AD feature is emotion contagion which is a basic affective mechanism synchronizing physiological and behavioral states with those of another to promote affective simulation and altruistic behavior and is not dependant on higher order cognitive processes. Anterior hippocampus has been associated in both MCI and AD patients with experiencing high levels of emotional contagion (Sturm et al., 2013). Emotional contagion was found to be weakly correlated with depression symptoms (Sturm et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is one of the earliest affected brain regions in Alzheimer's disease (AD) and its dysfunction is believed to underlie the core feature of the disease-memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpointing regions that might enhance the predictive value of current diagnostic methods. Our review presents how changes in hippocampal volume, shape, symmetry and activation are reflected by cognitive impairment and how they are linked with neurogenesis alterations. Moreover, we revisit the functional differentiation along the anteroposterior longitudinal axis of the hippocampus and discuss its relevance for AD diagnosis. Finally, we indicate that apart from hippocampal subfield volumetry, the characteristic pattern of hippocampal hyperactivation associated with seizures and neurogenesis changes is another promising candidate for an early AD biomarker that could become also a target for early interventions.
    Frontiers in Cellular Neuroscience 03/2014; 8:95. DOI:10.3389/fncel.2014.00095 · 4.29 Impact Factor
Show more