A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells

The Wallace H. Coulter Department of Biomedical Engineering, School of Chemistry & Biochemistry and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
Angewandte Chemie International Edition (Impact Factor: 11.26). 07/2013; 52(27). DOI: 10.1002/anie.201209633
Source: PubMed


Stimuli-responsive release: The high levels of reactive oxygen species (ROS) in prostate cancer cells can be exploited to trigger cancer-targeted gene delivery. A ROS-responsive thioketal-based cationic polymer was synthesized and functionalization with a cancer-targeting peptide led to selective and enhanced gene transfection in prostate cancer cells.

1 Follower
60 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis of a new type of amphiphilic poly(amino ester)s which can be completely degraded in aqueous media via H2O2 oxidation. The polymers were prepared by the controlled Michael-type addition polymerization of a phenylboronic pinacol ester-containing diacrylate and N-aminoethylpiperazine, followed by postmodification with mPEG5K-succinimide ester. Upon oxidation, the side chain phenylboronic esters will be transformed into phenol groups which can trigger the sequential self-immolative process to degrade the polymer main chain. Meanwhile, the amino groups on the polymer main chain are capable of trapping the highly active quinone methides generated in situ during the oxidative degradation of the polymers. Based on the detailed oxidation kinetics and products of several model compounds, the H2O2-triggered degradation of nanoparticles of these copolymers was investigated by NMR spectroscopy, GPC, and Nile red fluorescence probe. The results demonstrate that the poly(amino ester) backbones were completely degraded by H2O2, resulting in the dissociation of nanoparticles. Oxidative degradation rates of the nanoparticles could be accelerated by increasing the concentration of H2O2, the PEGylation degree, or the pH of the buffer. Interestingly, the in situ formed quinone methides could be captured by secondary amines due to their higher nucleophilicity than H2O. Of potential importance, these amphiphilic oxidation-responsive copolymers are sensitive to stimulation of 200 μM H2O2; therefore, they may find application in the field of intelligent drug/gene delivery systems.
    Macromolecules 10/2013; 46(21):8416–8425. DOI:10.1021/ma401656t · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Reactive oxygen species and reactive nitrogen species (ROS/RNS) play an important role in cell signaling pathways. However, the increased production of these species may disrupt cellular homeostasis, giving rise to pathological conditions. Biomaterials that are responsive to ROS/RNS can be strategically used to specifically release therapeutics and diagnostic agents to regions undergoing oxidative stress. Recent advances: Many nanocarriers intended to exploit redox micro-environments as triggers for drug release, summarized and compared in this review, have recently been developed. We describe these carriers' chemical structures, strategies for payload protection and oxidation-selective release, and ROS/RNS sensitivity as tested in initial studies. Critical issues: ROS/RNS are unstable, so reliable measures of their concentrations in various conditions are scarce. Combined with the dearth of materials shown to respond to physiologically relevant levels of ROS/RNS, evaluations of their true sensitivity are difficult. Future directions: Oxidation-responsive nanocarriers developed thus far show tremendous potential for applicability in vivo; however, the sensitivity of these chemistries needs to be fine tuned to enable responses to physiological levels of ROS and RNS.
    Antioxidants & Redox Signaling 12/2013; 21(5). DOI:10.1089/ars.2013.5754 · 7.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous polyester-based biomaterials and provide a robust, cell-degradable substrate for guiding new tissue formation.
    Biomaterials 01/2014; 35(12). DOI:10.1016/j.biomaterials.2014.01.026 · 8.56 Impact Factor
Show more