The Role of Gene Therapy in Regenerative Surgery

Padua, Italy From the Clinic of Plastic Surgery, Department of Surgery, Padua University Hospital.
Plastic and Reconstructive Surgery (Impact Factor: 2.99). 06/2013; 131(6):1425-1435. DOI: 10.1097/PRS.0b013e31828bd153
Source: PubMed


In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided.

Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles.

Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis.

Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.

1 Follower
15 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The exstrophy–epispadias complex is a rare spectrum of anomalies affecting the genitourinary system, anterior abdominal wall, and pelvis. Recent advances in the repair of classic bladder exstrophy (CBE) and cloacal exstrophy (CE) have resulted in significant changes in outcomes of surgical management (including higher continence rate, fewer surgical complications, and better cosmesis) and health-related quality of life in these patients. These noteworthy changes resulted from advances in the pathophysiological and genetic backgrounds of this disease and better radiologic assessment of the three-dimensional anatomy of the bony pelvis and its musculature. A PubMed search was performed with the keyword exstrophy. The resulting literature pertaining to genetics, stem cells, imaging, tissue engineering, epidemiology, and endocrinology was reviewed. The following represents an overview of the advances in basic science understanding and imaging of the exstrophy–epispadias spectrum and discusses their possible and future effects on the management of CBE and CE.
    Journal of pediatric urology 01/2013; 10(2). DOI:10.1016/j.jpurol.2013.11.017 · 0.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-viral gene delivery systems are important transport vehicles that can be safe and effective alternatives to currently available viral systems. A new family of multifunctional spider silk-based gene carriers was bioengineered and found capable of targeting human mesenchymal stem cells (hMSCs). These carriers successfully delivered DNA to the nucleus of these mammalian cells. The presence of specific functional sequences in the recombinant proteins, such as a nuclear localization sequence (NLS) of the large tumor (T) antigen of the Simian virus 40 (SV40), an hMSC high affinity binding peptide (HAB), and a translocation motif (TLM) of the hepatitis-B virus surface protein (PreS2), and their roles in mitigation and enhancement of gene transfection efficiency towards hMSCs were characterized. The results demonstrate that these bioengineered spider silk proteins serve as effective carriers, without the well-known complications associated with viral delivery systems. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 12/2014; 103(7). DOI:10.1002/jbm.b.33322 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: There are safety concerns regarding viral vectors in regenerative medicine research because of adverse experiences in conventional gene therapy with systemic delivery of recombinant virus. Transgenic cell therapy emerges as an attractive strategy, in which the genes of interest are delivered in vitro into isolated cells first; instead of transgene vectors, these transgenic cells are then implanted back to the host. This ex vivo strategy enables the examination of cell viability and phenotype before subsequent transplantation and prevents to the most extent the potential delivery-related hazards caused by exposure of viral components to the host. The transgenic implants are often localized, thus traceable for safety monitoring except those cases involving systemic distribution of transgenic cells. Areas covered: The safety of ex vivo process used in viral vector-mediated transgenic cell therapy for regenerative medicine purpose. Expert opinion: Safety concerns related to viral vector delivery can be dispelled in the majority of regenerative medicine applications by transgenic cell therapy. The ex vivo process executes in vitro transfection before subsequent transplantation of transgenic cells so that it avoids the exposure of viral components (particularly capsids or envelops) to the host, while this exposure is inevitable in conventional in vivo gene therapy. Besides, the practice of localized cell implantation and in vitro manipulation also reinforce the safety of transgenic cell therapy. Given the significantly reduced delivery-related hazard, viral vector-mediated transgenic cell therapy can be generally considered as a safe approach for most regenerative medicine applications.
    Expert Opinion on Biological Therapy 12/2014; 15(4). DOI:10.1517/14712598.2015.995086 · 3.74 Impact Factor
Show more