Article

Cytosolic Sensing of Viruses.

Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
Immunity (Impact Factor: 19.75). 05/2013; 38(5):855-869. DOI: 10.1016/j.immuni.2013.05.007
Source: PubMed

ABSTRACT Cells are equipped with mechanisms that allow them to rapidly detect and respond to viruses. These defense mechanisms rely partly on receptors that monitor the cytosol for the presence of atypical nucleic acids associated with virus infection. RIG-I-like receptors detect RNA molecules that are absent from the uninfected host. DNA receptors alert the cell to the abnormal presence of that nucleic acid in the cytosol. Signaling by RNA and DNA receptors results in the induction of restriction factors that prevent virus replication and establish cell-intrinsic antiviral immunity. In light of these formidable obstacles, viruses have evolved mechanisms of evasion, masking nucleic acid structures recognized by the host, sequestering themselves away from the cytosol or targeting host sensors, and signaling adaptors for deactivation or degradation. Here, we detail recent advances in the molecular understanding of cytosolic nucleic acid detection and its evasion by viruses.

1 Follower
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vertebrate antiviral innate immune system is often considered to consist of two distinct groups of proteins: pattern recognition receptors (PRRs) that detect viral infection and induce the interferon (IFN) signaling, and effectors that directly act against viral replication. Accordingly, previous studies on PRRs, such as RIG-I and MDA5, have primarily focused on their functions in viral double-stranded RNA (dsRNA) detection and consequent antiviral signaling. We report here that both RIG-I and MDA5 efficiently displace viral proteins pre-bound to dsRNA in a manner dependent on their ATP hydrolysis, and that this activity assists a dsRNA-dependent antiviral effector protein, PKR, and allows RIG-I to promote MDA5 signaling. Furthermore, truncated RIG-I/MDA5 lacking the signaling domain, and hence the IFN stimulatory activity, displaces viral proteins and suppresses replication of certain viruses in an ATP-dependent manner. Thus, this study reveals novel "effector-like" functions of RIG-I and MDA5 that challenge the conventional view of PRRs. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular cell 04/2015; DOI:10.1016/j.molcel.2015.03.014 · 14.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nodamura virus (NoV) lethally infects suckling mice and contains a segmented positive-strand RNA genome that encodes a potent suppressor of RNA interference (RNAi). Recent studies have demonstrated immune detection and subsequent processing of NoV dsRNA replicative intermediates by the mouse RNAi machinery. However, diverse RNA viruses, including Encephalomyocarditis virus that also triggers Dicer-dependent biogenesis of viral siRNAs in mouse cells, are targeted in mammals by RIG-I-like receptors that initiate an IFN-dependent antiviral response. Using mouse embryonic fibroblasts (MEFs) for NoV infection, here we show that MEFs derived from mice knockout for RIG-I, but not those knockout for MDA5, LGP2, TLR3 or TLR7, exhibited an enhanced susceptibility to NoV. Further studies indicate that NoV infection induced an IFN-dependent antiviral response mediated by RIG-I. Our findings suggest that RIG-I directs a typical IFN-dependent antiviral response against an RNA virus capable of suppressing the RNAi response. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 04/2015; DOI:10.1016/j.bbrc.2015.03.145 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)-coupled retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN-dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN-mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. © 2015 Goritzka et al.
    Journal of Experimental Medicine 04/2015; DOI:10.1084/jem.20140825 · 13.91 Impact Factor